\(K=a^2+b^2-2a+2b+2017\)

b) \(H=3x^2+9...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2017

\(\left(a\right)..K=a^2+b^2-2a+2b+2017=\left(a-1\right)^2+\left(b+1\right)^2+2015\ge2015\)min K =2015 khi a=1 và b=-1

\(\left(b\right)..H=3x^2+9y^2-6xy-2x+2016=\left[9y^2-6xy+x^2\right]+\left[2x^2-2x+\dfrac{2}{4}\right]+2016-\dfrac{2}{4}\)

\(H=\left(3y-x\right)^2+2\left(x-\dfrac{1}{2}\right)^2+2015,5\)

min H =2015,5 khi x=1/2 và y=1/6

8 tháng 2 2017

Mình làm câu a thôi nha câu b tương tự nha bạn :)

\(M=2x^2+9y^2-16x-12y+2017\)

\(=\left(2x^2-16x\right)+\left(9y^2-12y\right)+2017\)

\(=2\left(x^2-8x+4^2\right)+\left(9y^2-12y+2^2\right)+1981\)

\(=2\left(x-4\right)^2+\left(3y-2\right)^2+1981\)

Dấu "=" xảy ra khi và chỉ khi \(\left[\begin{matrix}x-4=0\\3y-2=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=4\\y=\frac{2}{3}\end{matrix}\right.\)

Vậy \(Min_M=1981\) khi và chỉ khi \(\left\{\begin{matrix}x=4\\y=\frac{2}{3}\end{matrix}\right.\).

8 tháng 2 2017

a)(x-4)2 + (x-4)2 + (3y-2)2 +2017 -32-4

gtnn = 1981

b) tt

28 tháng 8 2019

A= 4x2 - 3x + 1

= (2x) 2 - 2.2x.4/3 + (4/3) 2 - (4/3) 2 + 1

= (2x - 4/3) 2 - 7/9

Nhận xét: (2x - 4/3) 2 \(\ge\)0 với mọi x

=> (2x - 4/3) 2 - 7/9 \(\le\) 7/9

=> Min A là 9

Dấu "=" xảy ra <=> 2x - 4/3 = 0 <=> 2x = 4/3 <=> x = 2/3

Vậy..

28 tháng 8 2019

thanks bn nhiều

28 tháng 3 2020

ĐKXĐ bạn tự tìm nha : )

k, Ta có : \(\frac{1-4x^2}{x^2+4x}:\frac{2-4x}{3x}=\frac{\left(1-2x\right)\left(1+2x\right)}{x\left(x+4\right)}.\frac{3x}{2\left(1-2x\right)}\)

\(=\frac{3x\left(1-2x\right)\left(1+2x\right)}{2x\left(x+4\right)\left(1-2x\right)}=\frac{3\left(1+2x\right)}{2\left(x+4\right)}\)

j, Ta có : \(\frac{x+y}{y-x}:\frac{x^2+xy}{3x^2-3y^2}=\frac{x+y}{y-x}:\frac{x\left(x+y\right)}{3\left(x^2-y^2\right)}=\frac{x+y}{y-x}.\frac{3\left(x-y\right)\left(x+y\right)}{x\left(x+y\right)}\)

\(=\frac{3\left(x-y\right)\left(x+y\right)}{x\left(y-x\right)}=\frac{3\left(x-y\right)\left(x+y\right)}{-x\left(x-y\right)}=\frac{-3\left(x+y\right)}{x}\)

i, Ta có : \(\frac{a^2+ab}{b-a}:\frac{a+b}{2a^2-2b^2}=\frac{a\left(a+b\right)}{-\left(a-b\right)}:\frac{a+b}{2\left(a^2-b^2\right)}=\frac{a\left(a+b\right)}{-\left(a-b\right)}.\frac{2\left(a-b\right)\left(a+b\right)}{a+b}\)

\(=\frac{2a\left(a+b\right)\left(a-b\right)}{-\left(a-b\right)}=-2a\left(a+b\right)\)

h, = k,

f, Ta có : \(\frac{x^2-36}{2x+10}.\frac{3}{6-x}=\frac{\left(x-6\right)\left(x+6\right)}{2\left(x+5\right)}.\frac{-3}{x-6}=\frac{-3\left(x-6\right)\left(x+6\right)}{2\left(x+5\right)\left(x-6\right)}=\frac{-3\left(x+6\right)}{2\left(x+5\right)}\)

28 tháng 3 2020
https://i.imgur.com/1LeIfCN.jpg
17 tháng 6 2017

C = x2 - 4x + 16
   = (x2 - 4x + 4) + 12
   = (x - 2)2 + 12

Vậy Cmin = 12 (vì \(\left(x-2\right)^2\ge0\Leftrightarrow\left(x-2\right)^2+12\ge12\))

Còn D mình không biết cách làm

30 tháng 7 2019

Thôi em làm luôn nha:)

\(D=\left(x^2-2.x.3y+9y^2\right)+4\left(x-3y\right)+4+x^2-2.x.6+36+1978\)

\(=\left(x-3y\right)^2+2\left(x-3y\right).2+2^2+\left(x-6\right)^2+1978\)

\(=\left(x-3y+2\right)^2+\left(x-6\right)^2+1978\ge1978\)

Đẳng thức xảy ra x =6, y = 8/3

2 tháng 7 2017

a) \(25.\left(x-1\right)^2-16\left(x+y\right)^2\)

= \(\left(5x-5\right)^2-\left(4x+y\right)^2\)

= \(\left(5x-5-4x-y\right)\left(5x-5+4x+y\right)\)

= \(\left(x-y-5\right)\left(9x+y-5\right)\)

b) \(x^3+3x^2+3x+1-27z^3\)

= \(\left(x+1\right)^3-27z^3\)

= \(\left(x+1-3z\right)\left(x^2+x.3z+9z^2\right)\)

c) \(x^2-2xy+y^2-xz+yz\)

= \(\left(x-y\right)^2-z\left(x-y\right)\)

= \(\left(x-y\right)\left(x-y-z\right)\)

d) \(a^3x-ab+b-x\)

= \(x\left(a^3-1\right)-b\left(a-1\right)\)

= \(x\left(a-1\right)\left(a^2+a+1\right)-b\left(a-1\right)\)

= \(\left(a-1\right)\left(a^2x+ax+x-b\right)\)

f) \(x^2+2x-4y^2-4y\)

= \(x^2+2x+1-\left(4y^2+4y+1\right)\)

= \(\left(x+1\right)^2-\left(2y+1\right)^2\)

= \(\left(x+1-2y-1\right)\left(x+1+2y+1\right)\)

= \(\left(x-2y\right)\left(x+2y+2\right)\)

g) \(xy-4+2x-2y\)

= \(y\left(x-2\right)-2\left(x-2\right)\)

= \(\left(x-2\right)\left(y-2\right)\)

a: \(=\left(5x-5\right)^2-\left(4x-4y\right)^2\)

\(=\left(5x-5-4x+4y\right)\cdot\left(5x-5+4x-4y\right)\)

\(=\left(x+4y-5\right)\left(9x-4y-5\right)\)

b: \(=\left(x+1\right)^3-\left(3z\right)^3\)

\(=\left(x+1-3z\right)\left(x^2+2x+1+3xz+3z+9z^2\right)\)

c: \(=\left(x-y\right)^2-z\left(x-y\right)\)

\(=\left(x-y\right)\left(x-y-z\right)\)

d: \(=x\left(a^3-1\right)-b\left(a-1\right)\)

\(=x\left(a-1\right)\cdot\left(a^2+a+1\right)-b\left(a-1\right)\)

\(=\left(a-1\right)\left(a^2x+ax+1-b\right)\)