Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ A = 2x2 + y2 - 2xy - 2x + 3
= (x2 - 2xy + y2) + (x2 - 2x + 1) + 2
= (x - y)2 + (x - 1)2 + 2\(\ge2\)
\(A=2x^2+y^2-2xy-2x+3\)
\(A=\left(x^2-2xy+y^2\right)+\left(x^2-2x+1\right)+2\)
\(A=\left(x-y\right)^2+\left(x-1\right)^2+2\)
Mà \(\left(x-y\right)^2\ge0\forall x;y\)
\(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow A\ge2\)
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}x-y=0\\x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=1\end{cases}}\)
Vậy Min A = 2 khi x=y=1
\(x^2+2y^2+2xy-2x+2=0.\)
\(\Leftrightarrow\left(x^2+y^2+1+2xy-2x-2y\right)+\left(y^2+2y+1\right)=0\)
\(\Leftrightarrow\left(x+y-1\right)^2+\left(y+1\right)^2=0\)
Mà \(\left(x+y-1\right)^2\ge0,\left(y+1\right)^2\ge0\)
Suy ra \(\hept{\begin{cases}\left(x+y-1\right)^2=0\\\left(y+1\right)^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x+y=1\\y=-1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=-1\end{cases}.}\)
\(2x^2-8x+y^2+2y+9=0\)
\(\Leftrightarrow\left(2x^2-8x+8\right)+\left(y^2+2y+1\right)=0\)
\(\Leftrightarrow2\left(x^2-4x+4\right)+\left(y+1\right)^2=0\)
\(\Leftrightarrow2\left(x-2\right)^2+\left(y+1\right)^2=0\)
Mà \(2\left(x-2\right)^2\ge0,\left(y+1\right)^2\ge0\)
Suy ra \(\hept{\begin{cases}2\left(x-2\right)^2=0\\\left(y+1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=-1\end{cases}}}\)
a)Min=-3 khi x=2 và y=-3
b)Min=7/2 khi x=1/2 và y=-1
A có thể giải rõ giúp e dc k