\(A=\frac{4x+3}{x^2+1}\)

B=\(\frac{x^4+1...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 6 2019

\(A=\frac{4x+3}{x^2+1}\Leftrightarrow Ax^2-4x+A-3=0\)

\(\Delta'=4-A\left(A-3\right)=-A^2+3A+4\ge0\) \(\Rightarrow-1\le A\le4\)

\(\Rightarrow A_{max}=4\) khi \(x=\frac{1}{2}\)

\(A_{min}=-1\) khi \(x=-2\)

b/

\(B=\frac{2x^4+2}{2\left(x^2+1\right)^2}=\frac{x^4+2x^2+1+x^4-2x^2+1}{2\left(x^2+1\right)^2}=\frac{1}{2}+\frac{\left(x^2-1\right)^2}{2\left(x^2+1\right)^2}\ge\frac{1}{2}\)

\(\Rightarrow B_{min}=\frac{1}{2}\) khi \(x^2=1\)

\(B=\frac{x^4+2x^2+1-2x^2}{\left(x^2+1\right)^2}=1-\frac{2x^2}{\left(x^2+1\right)^2}\le1\)

\(\Rightarrow B_{max}=1\) khi \(x=0\)

9 tháng 9 2017

Ta có : \(P=2x^2-8x+1=2\left(x^2-4x\right)+1=2\left(x^2-4x+4-4\right)+1=2\left(x-2\right)^2-7\)

Vì \(2\left(x-2\right)^2\ge0\forall x\) 

Nên : \(P=2\left(x-2\right)^2-7\ge-7\forall x\in R\)

Vậy \(P_{min}=-7\) khi x = 2

4 tháng 5 2017

mình 2k4 ko bt làm

6 tháng 5 2017

 a)    \(B=\frac{3x^2+6x+10}{x^2+2x+5}\)

\(\Leftrightarrow B=3-\frac{5}{x^2+2x+5}\)

\(\Leftrightarrow B=3-\frac{5}{5\left(\frac{x^2}{5}+\frac{2x}{5}+\frac{5}{5}\right)}\Leftrightarrow B=3-\frac{1}{\frac{\left(x^2+2x+1\right)}{5}+\frac{4}{5}}\)( cho \(\left(x+1\right)^2=0\))

\(\Leftrightarrow maxB=3-\frac{1}{\frac{4}{5}}=\frac{7}{4}\)   KHI X= -1

c)  \(D=x^2-2x+y^2+4y+7\)

\(\Leftrightarrow D=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+2\)

\(\Leftrightarrow D=\left(x-1\right)^2+\left(y+2\right)^2+2\)

\(\Leftrightarrow minD=2\)KHI X= 1 và Y= -2

e) Câu này đề có vẻ sai bạn kiểm tra lại giúp mk ! mk làm theo đề đúng nka !

         \(E=\frac{x^2-4x+1}{x^2}\)

\(\Leftrightarrow E=\frac{x^2\left(1-\frac{4}{x}+\frac{1}{x^2}\right)}{x^2}=1-\frac{4}{x}+\frac{1}{x^2}\)

ĐẶT    \(y=\frac{1}{x}\)\(\Leftrightarrow minE=-3\)KHI X = 1/2

Hai câu còn lại tối mk giải tiếp mk bận đi học rùi bạn thông cảm 

25 tháng 8 2016

1.a) Không tồn tại\(\)

   b) 1997 tại x=4

   c) 4 tại x=1;y=2

   d) 164 tại x=8

2.a) x>3 và x<-1

   b) Không tốn tại x