\(M=\dfrac{2x^4+15x^2+5}{9x^4+36x^2+36}\)

m...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(=\dfrac{x^4+15x+7}{x^4+15x+7}\cdot\dfrac{x}{14x^2+1}\cdot\dfrac{4x^3+4}{2x^3+2}=\dfrac{2x}{14x^2+1}\)

b: \(=\dfrac{x^7+3x^2+2}{x^7+3x^2+2}\cdot\dfrac{x^2+x+1}{x^3-1}\cdot\dfrac{3x}{x+1}\)

\(=\dfrac{1}{x-1}\cdot\dfrac{3x}{x+1}=\dfrac{3x}{x^2-1}\)

20 tháng 4 2017

1/

Ta có: 6x4 -x3-7x2+x+1=0

<=> 6x4-6x3+5x3-5x2-2x2+2x-x+1=0

<=> 6x3(x-1)+5x2(x-1)-2x(x-1)-(x-1)=0

<=> (x-1) ( 6x3+5x2-2x-1)=0

<=> ( x-1) ( 6x3-3x2+8x2-4x+2x-1)=0

<=> (x-1)\(\left[3x^2\left(2x-1\right)+4x\left(2x-1\right)+\left(2x-1\right)\right]\)=0

<=> (x-1) ( 2x-1) ( 3x2+4x+1)=0

<=> (x-1) ( 2x-1) (3x2+3x+x+1)=0

<=> (x-1) (2x-1) \(\left[3x\left(x+1\right)+\left(x+1\right)\right]\)=0

<=> (x-1)(2x-1)(x+1)(3x+1)=0

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\2x-1=0\\x+1=0\\3x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\2x=1\\x=-1\\3x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{2}\\x=-1\\x=\dfrac{-1}{3}\end{matrix}\right.\)

vậy \(S=\left\{\pm1;\dfrac{1}{2};\dfrac{-1}{3}\right\}\)

1 tháng 1 2019

\(6x^4-x^3-7x^2+x+1=0\)

\(\Leftrightarrow6x^4-6x^3+5x^3-5x^2-2x^2+2x-x+1=0\)

\(\Leftrightarrow6x^3\left(x-1\right)+5x^2\left(x-1\right)-2x\left(x-1\right)-\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(6x^3+5x^2-2x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(6x^3+6x^2-x^2-x-x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[6x^2\left(x+1\right)-x\left(x+1\right)-\left(x+1\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(6x^2-x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(6x^2-3x+2x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(2x-1\right)\left(3x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\\2x-1=0\\3x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=\dfrac{1}{2}\\x=-\dfrac{1}{3}\end{matrix}\right.\)

\(9x^4-15x^3-6x^2+5\)

\(=3x^2\left(3x^2-5x\right)-6x^2+5\)

\(=3x^2.2-6x^2+5\)

\(=6x^2-6x^2+5\)

\(=5\)

3 tháng 10 2019

\(9x^4-15x^3-6x^2+5\)

\(=3x^2\left(3x^2-5x\right)-6x^2+5\)

\(=3x^2.2-6x^2+5\)

\(=6x^2-6x^2+5\)

\(=5\)

1 tháng 1 2019

\(\dfrac{2x-1}{3x^2+7x+2}+\dfrac{3}{9x^2+15x+4}-\dfrac{2x+7}{3x^2-5x-12}=\dfrac{5}{x+2}\)

\(\Leftrightarrow\dfrac{2x-1}{\left(3x+1\right)\left(x+2\right)}+\dfrac{3}{\left(3x+1\right)\left(3x+4\right)}-\dfrac{2x+7}{\left(4x+3\right)\left(x-3\right)}=\dfrac{5}{x+2}\)

\(\Leftrightarrow\dfrac{1}{x+2}-\dfrac{1}{3x+1}+\dfrac{1}{3x+1}-\dfrac{1}{3x+4}+\dfrac{1}{3x+4}-\dfrac{1}{x-3}=\dfrac{5}{x+2}\)

\(\Leftrightarrow\dfrac{1}{x+2}-\dfrac{1}{x-3}=\dfrac{5}{x+2}\)

\(\Leftrightarrow\dfrac{x-3-x-2}{\left(x+2\right)\left(x-3\right)}=\dfrac{5\left(x-3\right)}{\left(x+2\right)\left(x-3\right)}\)

\(\Leftrightarrow5x-3=-5\)

\(\Leftrightarrow x=-\dfrac{2}{5}\)

Vậy...

1 tháng 1 2019

tks bạn

a: \(=3y^2-5x^2y^3-2y^2+3x^2y^3=y^2-2x^2y^3\)

b: \(=6x-y+2x^2+3y^2-2x^2+x=7x-y+3y^2\)

c: \(=x-y+4y^2-6xy+\dfrac{10x^2}{y}\)

 

23 tháng 9 2018

\(a.\left(9x^2y^3-15x^4y^4\right):3x^2y-\left(2-3x^2y\right)y^2\)

\(=3y^2-5x^2y^3-2y^2+3x^2y^3\)

\(=y^2-2x^2y^3\)

\(b.\left(6x^2-xy\right):x+\left(2x^3y+3xy^2\right):xy-\left(2x-1\right)x\)

\(=6x-y+2x^2+3y-2+x\)

\(=2x^2+7x+2y-2\)

\(c.\left(x^2-xy\right):x+\left(6x^2y^5-9x^3y^4+15x^4y^3\right):\dfrac{3}{2}x^2y^3\)

\(=x-y+4y^2-6xy+10x^2\)

23 tháng 9 2018

Oa, giờ mới biết bác cũng ở box Toán :))