Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dung bđt Bunhiacooxki:
\(A^2=\left(\sqrt{1+\sqrt{x}}+\sqrt{1+\sqrt{1-x}}\right)^2\le\left(1+1\right)\left(1+\sqrt{x}+1+\sqrt{1-x}\right).\)
\(=2\left(2+\sqrt{x}+\sqrt{1-x}\right)\le2\left(2+\sqrt{\left(1+1\right)\left(x+1-x\right)}\right)=2\left(2+\sqrt{2}\right).\)
\(\Rightarrow A\le\sqrt{2\left(2+\sqrt{2}\right)}\)
Vậy max \(A=\sqrt{2\left(2+\sqrt{2}\right)}\Leftrightarrow x=\frac{1}{2}.\)
DKXD của A, ta có \(x^{2\le5\Rightarrow-\sqrt{5}\le x\le\sqrt{5}}\)
mà \(3x\ge-3\sqrt{5}\)
mặt kkhác \(\sqrt{5-x^2}\ge0\Rightarrow A=3x+x\sqrt{5-x^2}\ge-3\sqrt{5}\)
min A= \(-3\sqrt{5}\)\(\Leftrightarrow x=-\sqrt{5}\)
a) \(A=\sqrt{x-2}+\sqrt{6-x}\)
\(\Rightarrow A^2=x-2+6-x+2\sqrt{\left(x-2\right)\left(6-x\right)}\)
Ta có \(\sqrt{\left(x-2\right)\left(6-x\right)}\ge0,\forall x\)
Do đó \(A^2=4+2\sqrt{\left(x-2\right)\left(6-x\right)}\ge4\)
Mà A không âm \(\Leftrightarrow A\ge2\)
Dấu "=" \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)
Áp dụng BĐT Bunhiacopxky:
\(A^2=\left(\sqrt{x-2}+\sqrt{6-x}\right)^2\le\left(x-2+6-x\right)\left(1+1\right)=4\cdot2=8\)
\(\Leftrightarrow A\le\sqrt{8}\)
Dấu "=" \(\Leftrightarrow x-2=6-x\Leftrightarrow x=4\)
Mấy bài còn lại y chang nha
Tick hộ nha
$A=2x-\sqrt{x}=2(x-\frac{1}{2}\sqrt{x}+\frac{1}{4^2})-\frac{1}{8}$
$=2(\sqrt{x}-\frac{1}{4})^2-\frac{1}{8}$
$\geq \frac{-1}{8}$
Vậy $A_{\min}=-\frac{1}{8}$. Giá trị này đạt tại $x=\frac{1}{16}$
$B=x+\sqrt{x}$
Vì $x\geq 0$ nên $B\geq 0+\sqrt{0}=0$
Vậy $B_{\min}=0$. Giá trị này đạt tại $x=0$
Áp dụng BĐT Bu-nhi-a-cốp-xki ta có:
\(A^2=\left(1.\sqrt{x+1}+1.\sqrt{1-x}\right)^2\le\left(1^2+1^2\right)\left(x+1+1-x\right)=4\Rightarrow A\le2\)
Xảy ra đẳng thức khi và chỉ khi \(\sqrt{x+1}=\sqrt{1-x}\Leftrightarrow x=0\). Vậy max A = 2 khi và chỉ khi x=0
Áp dụng BĐT \(\sqrt{A}+\sqrt{B}\ge\sqrt{A+B}\)(xảy ra đẳng thức khi và chỉ khi AB=0) (bạn tự CM bằng cách bình phương 2 vế)
\(\Rightarrow A=\sqrt{x+1}+\sqrt{1-x}\ge\sqrt{x+1+1-x}=\sqrt{2}\).
Xảy ra đẳng thức khi <=> x= -1 hoặc x=1 .Vậy....