K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 9 2020

a.

\(y=2sinx-\left(1-sin^2x\right)=sin^2x+2sinx-1=\left(sinx+1\right)^2-2\ge-2\)

\(\Rightarrow y_{min}=-2\)

\(y=sin^2x+2sinx-1=\left(sinx-1\right)\left(sinx+3\right)+2\le2\)

\(\Rightarrow y_{max}=2\)

b.

\(1\le3-2sinx\le5\Rightarrow6\le y\le5+\sqrt{5}\)

\(y_{min}=6\) ; \(y_{max}=5+\sqrt{5}\)

NV
6 tháng 8 2021

a.

\(y=2\left(1-cos2x\right)-\dfrac{5}{2}sin2x+\dfrac{1}{2}+\dfrac{1}{2}cos2x+10\)

\(=-\dfrac{1}{2}\left(5sin2x+3cos2x\right)+\dfrac{25}{2}\)

\(=-\dfrac{\sqrt{34}}{2}\left(\dfrac{5}{\sqrt{34}}sin2x+\dfrac{3}{\sqrt{34}}cos2x\right)+\dfrac{25}{2}\)

Đặt \(\dfrac{5}{\sqrt{34}}=cosa\)

\(\Rightarrow y=-\dfrac{\sqrt{34}}{2}\left(sin2x.cosa+cos2x.sina\right)+\dfrac{25}{2}\)

\(=-\dfrac{\sqrt{34}}{2}sin\left(2x+a\right)+\dfrac{25}{2}\)

Do \(-1\le sin\left(2x+a\right)\le1\)

\(\Rightarrow\dfrac{25-\sqrt{34}}{2}\le y\le\dfrac{25+\sqrt{34}}{2}\)

NV
6 tháng 8 2021

b.

\(y=\dfrac{sin^2x-2sin2x+1}{3+sin^2x+2cos^2x}=\dfrac{2sin^2x-4sin2x+2}{6+2\left(sin^2x+cos^2x\right)+2cos^2x}\)

\(=\dfrac{1-cos2x-4sin2x+2}{8+1+cos2x}=\dfrac{3-4sin2x-cos2x}{9+cos2x}\)

\(\Rightarrow9y+y.cos2x=3-4sin2x-cos2x\)

\(\Rightarrow4sin2x+\left(y+1\right)cos2x=3-9y\)

Theo điều kiện có nghiệm của pt lượng giác bậc nhất:

\(4^2+\left(y+1\right)^2\ge\left(3-9y\right)^2\)

\(\Leftrightarrow80y^2-56y-8\le0\)

\(\Rightarrow\dfrac{7-\sqrt{89}}{20}\le y\le\dfrac{7+\sqrt{89}}{20}\)

a: -1<=sin x<=1

=>-1+3<=sin x+3<=1+3

=>2<=sinx+3<=4

=>\(\dfrac{1}{2}>=\dfrac{1}{sinx+3}>=\dfrac{1}{4}\)

=>\(2>=\dfrac{4}{sinx+3}>=1\)

=>\(-2< =-\dfrac{4}{sinx+3}< =-1\)

=>-2+3<=y<=-1+3

=>1<=y<=2

y=1 khi \(\dfrac{-4}{sinx+3}+3=1\)

=>\(\dfrac{-4}{sinx+3}=-2\)

=>sinx+3=2

=>sin x=-1

=>x=-pi/2+k2pi

y=3 khi sin x=1

=>x=pi/2+k2pi

b: -1<=cosx<=1

=>4>=-4cosx>=-4

=>9>=-4cosx+5>=1

=>2/9<=2/5-4cosx<=2

=>2/9<=y<=2

\(y_{min}=\dfrac{2}{9}\) khi \(\dfrac{2}{5-4cosx}=\dfrac{2}{9}\)

=>\(5-4\cdot cosx=9\)

=>4*cosx=4

=>cosx=1

=>x=k2pi

y max khi cosx=-1

=>x=pi+k2pi

c: \(0< =cos^2x< =1\)

=>\(0< =2\cdot cos^2x< =2\)

=>\(-1< =y< =2\)

y min=-1 khi cos^2x=0

=>x=pi/2+kpi

y max=2 khi cos^2x=1

=>sin^2x=0

=>x=kpi

 

11 tháng 5 2022

a.\(-1\le cosx\le1\Rightarrow-4\le y=3cosx-1\le2\)

b.-1 \(\le sinx\le1\)\(\Rightarrow3\le y=5+2sinx\le7\)  

c.\(\sqrt{3-1}\le\sqrt{3+cos2x}\le\sqrt{3+1}\Rightarrow\sqrt{2}\le y\le2\)

d.\(y=\sqrt{5sinx-1}+2\le\sqrt{5.1-1}+2=4\)

\(y=\sqrt{5sinx-1}+2\ge2\) . " = " \(\Leftrightarrow sinx=\dfrac{1}{5}\Leftrightarrow\left[{}\begin{matrix}x=arcsin\left(\dfrac{1}{5}\right)+2k\pi\\x=\pi-arcsin\left(\dfrac{1}{5}\right)+2k\pi\end{matrix}\right.\)  ( k thuộc Z ) 

11 tháng 9 2021

\(y=\dfrac{2\sin x}{\cos\left(x+1\right)}\\ ĐK:\cos\left(x+1\right)\ne0\\ \Leftrightarrow x\ne k2\pi-1\)

11 tháng 9 2021

y=2sinxcos(x+1)

dk :cos(x+1)≠0

= x≠k2π−1

12 tháng 9 2021

1, \(y=2-sin\left(\dfrac{3x}{2}+x\right).cos\left(x+\dfrac{\pi}{2}\right)\)

 \(y=2-\left(-cosx\right).\left(-sinx\right)\)

y = 2 - sinx.cosx

y = \(2-\dfrac{1}{2}sin2x\)

Max = 2 + \(\dfrac{1}{2}\) = 2,5

Min = \(2-\dfrac{1}{2}\) = 1,5

2, y = \(\sqrt{5-\dfrac{1}{2}sin^22x}\)

Min = \(\sqrt{5-\dfrac{1}{2}}=\dfrac{3\sqrt{2}}{2}\)

Max = \(\sqrt{5}\)

22 tháng 5 2021

ĐK: Biểu thức xác định với mọi `x`.

`y_(min) <=> (\sqrt(2-cos(x-π/6))+3)_(max) <=> (cos(x-π/6))_(max)`

`<=> cos(x-π/6)=1 <=> x-π/6=k2π <=> x = π/6+k2π ( k \in ZZ)`.

`=> y_(min) = 1`

`y_(max) <=> (\sqrt(2-cos(x-π/6))+3)_(min) <=> (cos(x-π/6))_(min)`

`<=> cos(x-π/6)=-1 <=> x -π/6= π+k2π <=> x = (7π)/6+k2π (k \in ZZ)`

`=> y_(max) = (6-2\sqrt3)/3`.

22 tháng 5 2021

Vội vàng quá r bạn, y max mà lại bé hơn y min ư?