K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2023

\(G=-3x^2-5x+1\\ =-3\left(x^2+2.\dfrac{5}{6}x+\dfrac{25}{36}\right)+\dfrac{37}{12}\\ =\dfrac{37}{12}-3\left(x+\dfrac{5}{6}\right)^2\\ Vì:\left(x+\dfrac{5}{6}\right)^2\ge0\forall x\in R\\ Vậy:G_{max}=\dfrac{37}{12}.khi.x=-\dfrac{5}{6}\)

AH
Akai Haruma
Giáo viên
12 tháng 8 2023

Tìm min:

$F=3x^2+x-2=3(x^2+\frac{x}{3})-2$

$=3[x^2+\frac{x}{3}+(\frac{1}{6})^2]-\frac{25}{12}$

$=3(x+\frac{1}{6})^2-\frac{25}{12}\geq \frac{-25}{12}$

Vậy $F_{\min}=\frac{-25}{12}$. Giá trị này đạt tại $x+\frac{1}{6}=0$
$\Leftrightarrow x=\frac{-1}{6}$

AH
Akai Haruma
Giáo viên
12 tháng 8 2023

Tìm min

$G=4x^2+2x-1=(2x)^2+2.2x.\frac{1}{2}+(\frac{1}{2})^2-\frac{5}{4}$

$=(2x+\frac{1}{2})^2-\frac{5}{4}\geq 0-\frac{5}{4}=\frac{-5}{4}$ (do $(2x+\frac{1}{2})^2\geq 0$ với mọi $x$)

Vậy $G_{\min}=\frac{-5}{4}$. Giá trị này đạt tại $2x+\frac{1}{2}=0$

$\Leftrightarrow x=\frac{-1}{4}$

23 tháng 12 2023

\(B=3x^2+3x-1\)

\(=3\left(x^2+x-\dfrac{1}{3}\right)\)

\(=3\left(x^2+x+\dfrac{1}{4}-\dfrac{7}{12}\right)\)

\(=3\left(x+\dfrac{1}{2}\right)^2-\dfrac{7}{4}>=-\dfrac{7}{4}\forall x\)

Dấu '=' xảy ra khi x+1/2=0

=>\(x=-\dfrac{1}{2}\)

\(C=-2x^2+7x+3\)

\(=-2\left(x^2-\dfrac{7}{2}x-\dfrac{3}{2}\right)\)

\(=-2\left(x^2-2\cdot x\cdot\dfrac{7}{4}+\dfrac{49}{16}-\dfrac{73}{16}\right)\)

\(=-2\left(x-\dfrac{7}{4}\right)^2+\dfrac{73}{8}< =\dfrac{73}{8}\forall x\)

Dấu '=' xảy ra khi x-7/4=0

=>x=7/4

loading...

loading...

loading...

11 tháng 7 2017

a)\(f\left(x\right)=\left(3x+4\right)\cdot\left(5x-1\right)+\left(5x+2\right)\cdot\left(1-3x\right)+2\)

\(=15x^2-3x+20x-4+5x-15x^2+2-6x+2\)

\(=16x\)

b)\(g\left(x\right)=\left(5x-1\right)\cdot\left(2x+3\right)-3\cdot\left(3x-1\right)\)

\(=10x^2+15x-2x-3-9x+3\)

\(=10x^2+4x\)

12 tháng 7 2016

nhanh lên các bạn nhé mai mình đi học rồi

18 tháng 7 2021

`C=-2x(x+7)=-2x^2-14x`

`=-(2x^2+14x)`

`=-( (\sqrt2x)^2 + 2.\sqrt2 x . (7\sqrt2)/2 + ((7\sqrt2)/2)^2 )+49/2`

`=-(\sqrt2x+(7\sqrt2)/2)^2+49/2`

`=> C_(max) = 49/2 <=> x=-7/2`

`D=-3x^2+5x-9`

`=-(3x^2-5x+9)`

`=-((\sqrt3x)^2 - 2.\sqrt3x . (5\sqrt3)/6 + ((5\sqrt3)/6)^2)-83/12`

`=-(\sqrt3x-(5\sqrt3)/6)^2-83/12`

`=> D_(max)=-83/12 <=> \sqrt3x - (5\sqrt3)/6=0 <=> x=5/6`

18 tháng 7 2021

Cảm ơn bạn nhiều. Cho mình hỏi, Max C mình ra 21/2 thì có đúng ko? Mặc dù x=-7/2 giống như bạn làm.

25 tháng 7 2018

\(M=3-5x-x^2\)

\(-M=\left(x^2+2.2,5x+2,5^2\right)-9,25\)

\(-M=\left(x+2,5\right)^2-9,25\)

\(\Rightarrow M=9,25-\left(x+2,5\right)^2\)

Ta có: \(\left(x+2,5\right)^2\ge0\forall x\)

\(\Rightarrow9-\left(x+2,5\right)^2\ge9\forall x\)

\(M=9\Leftrightarrow\left(x+2,5\right)^2=0\Leftrightarrow x=-2,5\)

Vậy \(M_{m\text{ax}}=9\Leftrightarrow x=-2,5\)

\(N=-7+4x-3x^2\)

\(-N=3x^2-4x^2+7\)

\(-N=3.\left(x^2-2.\frac{2}{3}x+\frac{2^2}{3^2}\right)+\frac{17}{3}\)

\(-N=3.\left(x-\frac{2}{3}\right)^2+\frac{17}{3}\)

\(N=-3.\left(x-\frac{2}{3}\right)^2-\frac{17}{3}\)

Ta có: \(3.\left(x-\frac{2}{3}\right)^2\ge0\forall x\)

\(\Rightarrow-\frac{17}{3}-3\left(x-\frac{2}{3}\right)^2\le-\frac{17}{3}\)

\(N=-\frac{17}{3}\Leftrightarrow-3.\left(x-\frac{2}{3}\right)^2=0\Leftrightarrow x=\frac{2}{3}\)

Vậy \(N_{max}=-\frac{17}{3}\Leftrightarrow x=\frac{2}{3}\)

\(P=4-6x^2\)

Ta có: \(6x^2\ge0\forall x\)

\(\Rightarrow4-6x^2\le4\forall x\)

\(P=4\Leftrightarrow6x^2=0\Leftrightarrow x=0\)

\(P_{max}=4\Leftrightarrow x=0\)

Tham khảo nhé~