Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm min:
$F=3x^2+x-2=3(x^2+\frac{x}{3})-2$
$=3[x^2+\frac{x}{3}+(\frac{1}{6})^2]-\frac{25}{12}$
$=3(x+\frac{1}{6})^2-\frac{25}{12}\geq \frac{-25}{12}$
Vậy $F_{\min}=\frac{-25}{12}$. Giá trị này đạt tại $x+\frac{1}{6}=0$
$\Leftrightarrow x=\frac{-1}{6}$
Tìm min
$G=4x^2+2x-1=(2x)^2+2.2x.\frac{1}{2}+(\frac{1}{2})^2-\frac{5}{4}$
$=(2x+\frac{1}{2})^2-\frac{5}{4}\geq 0-\frac{5}{4}=\frac{-5}{4}$ (do $(2x+\frac{1}{2})^2\geq 0$ với mọi $x$)
Vậy $G_{\min}=\frac{-5}{4}$. Giá trị này đạt tại $2x+\frac{1}{2}=0$
$\Leftrightarrow x=\frac{-1}{4}$
\(B=3x^2+3x-1\)
\(=3\left(x^2+x-\dfrac{1}{3}\right)\)
\(=3\left(x^2+x+\dfrac{1}{4}-\dfrac{7}{12}\right)\)
\(=3\left(x+\dfrac{1}{2}\right)^2-\dfrac{7}{4}>=-\dfrac{7}{4}\forall x\)
Dấu '=' xảy ra khi x+1/2=0
=>\(x=-\dfrac{1}{2}\)
\(C=-2x^2+7x+3\)
\(=-2\left(x^2-\dfrac{7}{2}x-\dfrac{3}{2}\right)\)
\(=-2\left(x^2-2\cdot x\cdot\dfrac{7}{4}+\dfrac{49}{16}-\dfrac{73}{16}\right)\)
\(=-2\left(x-\dfrac{7}{4}\right)^2+\dfrac{73}{8}< =\dfrac{73}{8}\forall x\)
Dấu '=' xảy ra khi x-7/4=0
=>x=7/4
a)\(f\left(x\right)=\left(3x+4\right)\cdot\left(5x-1\right)+\left(5x+2\right)\cdot\left(1-3x\right)+2\)
\(=15x^2-3x+20x-4+5x-15x^2+2-6x+2\)
\(=16x\)
b)\(g\left(x\right)=\left(5x-1\right)\cdot\left(2x+3\right)-3\cdot\left(3x-1\right)\)
\(=10x^2+15x-2x-3-9x+3\)
\(=10x^2+4x\)
`C=-2x(x+7)=-2x^2-14x`
`=-(2x^2+14x)`
`=-( (\sqrt2x)^2 + 2.\sqrt2 x . (7\sqrt2)/2 + ((7\sqrt2)/2)^2 )+49/2`
`=-(\sqrt2x+(7\sqrt2)/2)^2+49/2`
`=> C_(max) = 49/2 <=> x=-7/2`
`D=-3x^2+5x-9`
`=-(3x^2-5x+9)`
`=-((\sqrt3x)^2 - 2.\sqrt3x . (5\sqrt3)/6 + ((5\sqrt3)/6)^2)-83/12`
`=-(\sqrt3x-(5\sqrt3)/6)^2-83/12`
`=> D_(max)=-83/12 <=> \sqrt3x - (5\sqrt3)/6=0 <=> x=5/6`
Cảm ơn bạn nhiều. Cho mình hỏi, Max C mình ra 21/2 thì có đúng ko? Mặc dù x=-7/2 giống như bạn làm.
\(M=3-5x-x^2\)
\(-M=\left(x^2+2.2,5x+2,5^2\right)-9,25\)
\(-M=\left(x+2,5\right)^2-9,25\)
\(\Rightarrow M=9,25-\left(x+2,5\right)^2\)
Ta có: \(\left(x+2,5\right)^2\ge0\forall x\)
\(\Rightarrow9-\left(x+2,5\right)^2\ge9\forall x\)
\(M=9\Leftrightarrow\left(x+2,5\right)^2=0\Leftrightarrow x=-2,5\)
Vậy \(M_{m\text{ax}}=9\Leftrightarrow x=-2,5\)
\(N=-7+4x-3x^2\)
\(-N=3x^2-4x^2+7\)
\(-N=3.\left(x^2-2.\frac{2}{3}x+\frac{2^2}{3^2}\right)+\frac{17}{3}\)
\(-N=3.\left(x-\frac{2}{3}\right)^2+\frac{17}{3}\)
\(N=-3.\left(x-\frac{2}{3}\right)^2-\frac{17}{3}\)
Ta có: \(3.\left(x-\frac{2}{3}\right)^2\ge0\forall x\)
\(\Rightarrow-\frac{17}{3}-3\left(x-\frac{2}{3}\right)^2\le-\frac{17}{3}\)
\(N=-\frac{17}{3}\Leftrightarrow-3.\left(x-\frac{2}{3}\right)^2=0\Leftrightarrow x=\frac{2}{3}\)
Vậy \(N_{max}=-\frac{17}{3}\Leftrightarrow x=\frac{2}{3}\)
\(P=4-6x^2\)
Ta có: \(6x^2\ge0\forall x\)
\(\Rightarrow4-6x^2\le4\forall x\)
\(P=4\Leftrightarrow6x^2=0\Leftrightarrow x=0\)
\(P_{max}=4\Leftrightarrow x=0\)
Tham khảo nhé~
\(G=-3x^2-5x+1\\ =-3\left(x^2+2.\dfrac{5}{6}x+\dfrac{25}{36}\right)+\dfrac{37}{12}\\ =\dfrac{37}{12}-3\left(x+\dfrac{5}{6}\right)^2\\ Vì:\left(x+\dfrac{5}{6}\right)^2\ge0\forall x\in R\\ Vậy:G_{max}=\dfrac{37}{12}.khi.x=-\dfrac{5}{6}\)