Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+6x-3=4x\sqrt{2x-1}\left(1\right)\) ĐK: \(x\ge\frac{1}{2}\)
Đặt \(\sqrt{2x-1}=a\ge0\)
\(\Rightarrow6x-3=3a^2\)
=> (1) <=> x^2 +3a^2 = 4ax
<=> x^2 -4ax +3a^2 =0
<=> x^2 -ax - 3ax + 3a^2 =0
<=> x(x-a) -3a(x-a) =0
<=> (x-a) ( x-3a ) =0
\(\Leftrightarrow\orbr{\begin{cases}x=a\\x=3a\end{cases}}\)
TH1: x=a
\(\Rightarrow x=\sqrt{2x-1}\)\(\left(x\ge0\right)\)
\(\Leftrightarrow x^2=2x-1\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
<=> x=1 (tm)
TH2: x= 3a
\(\Rightarrow x=3\sqrt{2x-1}\left(x\ge0\right)\)
\(\Leftrightarrow x^2=18x-9\)
\(\Leftrightarrow x^2-18x+9=0\)
\(\Delta=288\)
=> pt có 2 nghiệm pb \(\orbr{\begin{cases}x=\frac{18+12\sqrt{2}}{2}=9+6\sqrt{2}\left(tm\right)\\x=\frac{18-12\sqrt{2}}{2}=9-6\sqrt{2}\left(tm\right)\end{cases}}\)
Vậy ...
a, \(P=\frac{\sqrt{x}\left(x\sqrt{x}+1\right)}{x-\sqrt{x}+1}-\frac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+1=\frac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}-\left(2\sqrt{x}+1\right)+1\)
\(=\sqrt{x}\left(\sqrt{x}+1\right)-2\sqrt{x}-1+1=x+\sqrt{x}-2\sqrt{x}=x-\sqrt{x}\)
b, \(P=x-\sqrt{x}=x-\sqrt{x}+\frac{1}{4}-\frac{1}{4}=\left(\sqrt{x}-\frac{1}{2}\right)^2-\frac{1}{4}\ge\frac{-1}{4}\)
Vậy Min P =-1/4
c, Chắc bằng nhau vì cùng dương mà
Phần a như bạn Đỗ Ngọc Hải chỉ thêm ĐKXĐ : x >= 0
b) Đkxd X >=0
Ta Có P = x-\(\sqrt{x}\) -2√x.½+1/4 -1/4=\(\left(\sqrt{x}-\frac{1}{2}\right)^2\)\(-\frac{1}{4}\)
Có √x>=0<=> (√x-½)2>=1/4<=>(√x-½)2-1/4>=0=>P>=0
Hay min p =0
Dấu = xảy ra <=> x=0
Vậy để minP=0<=>x=0
C)Dkxd x>1
CóP>=0(chứng minh trên )
=>|P|=P
Sử dụng bất đẳng thức AM - GM ta dễ thấy:
\(LHS=\sqrt{a-1+2\sqrt{a-2}}+\sqrt{a-1-2\sqrt{a-2}}\)
\(\ge2\sqrt{\left(a-1+2\sqrt{a-2}\right)\left(a-1-2\sqrt{a-2}\right)}\)
\(=2\sqrt{\left(a-1\right)^2-4\left(a-2\right)}=2\sqrt{a^2-6a+9}=2\sqrt{\left(a-3\right)^2}\ge2\)( vì a khác 3 )
Hoặc cách khác như thế này:
\(LHS=\sqrt{a-1+2\sqrt{a-2}}+\sqrt{a-1-2\sqrt{a-2}}\)
\(=\sqrt{\left[a-2+2\sqrt{a+2}+1\right]}+\sqrt{\left[a-2-2\sqrt{a-2}+1\right]}\)
\(=\sqrt{\left(\sqrt{a-2}+1\right)^2}+\sqrt{\left(\sqrt{a-2}-1\right)^2}\)
\(=\left|\sqrt{a-2}+1\right|+\left|\sqrt{a-2}-1\right|\)
\(=\left|\sqrt{a-2}+1\right|+\left|1-\sqrt{a-2}\right|\ge\left|\sqrt{a-2}+1+1-\sqrt{a-2}\right|=2\)
Đẳng thức tự tìm nha
\(=\left(\frac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+1\right)}-\frac{1}{\sqrt{x}-1}\right).\left(\frac{x+1}{x+1+\sqrt{x}}\right)\)
\(=\frac{2\sqrt{x}-x-1}{\left(\sqrt{x}-1\right)\left(x+1\right)}.\frac{x+1}{x+\sqrt{x}+1}=\frac{-\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)}.\frac{1}{x+\sqrt{x}+1}=\frac{-\left(\sqrt{x}-1\right)}{x+\sqrt{x}+1}\)
\(DK:x\ge1\)
\(A=\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}+2019\)
\(=|\sqrt{x-1}+1|+|\sqrt{x-1}-1|+2019\)
\(=|\sqrt{x-1}+1|+|1-\sqrt{x-1}|+2019\ge|\sqrt{x-1}+1+1-\sqrt{x-1}|+2019=2021\)
Dau '=' xay ra khi \(\left(\sqrt{x-1}+1\right)\left(1-\sqrt{x-1}\right)\ge0\)
TH1:
\(\hept{\begin{cases}\sqrt{x-1}+1\ge0\\1-\sqrt{x-1}\ge0\end{cases}\Leftrightarrow x=2\left(n\right)}\)
TH2:
\(\hept{\begin{cases}\sqrt{x-1}+1\le0\\1-\sqrt{x-1}\le0\end{cases}\Leftrightarrow\hept{\begin{cases}\sqrt{x-1}\le-1\\\sqrt{x-1}\ge1\end{cases}\left(l\right)}}\)
Vay \(A_{min}=2021\)khi \(x=2\)
\(\text{Ta có: }x=\sqrt{\frac{3-\sqrt{5}}{3+\sqrt{5}}}=\sqrt{\frac{\left(3-\sqrt{5}\right)^2}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}}=\frac{3-\sqrt{5}}{\sqrt{9-5}}=\frac{3-\sqrt{5}}{2}.\)
\(A=x^5-6x^4+12x^3-4x^2-13x+2020\)
\(=\left(x^5-3x^4+x^3\right)-\left(3x^4-9x^3+3x^2\right)+\left(2x^3-6x^2+2x\right)+\left(5x^2-15x+5\right)+2015\)
\(=x^3\left(x^2-3x+1\right)-3x^2\left(x^2-3x+1\right)+2x\left(x^2-3x+1\right)+5\left(x^2-3x+1\right)+2015\)
\(=\left(x^2-3x+1\right)\left(x^3-3x^2+2x+5\right)+2015\)
Thay x vào A ta có:
\(A=\left[\left(\frac{3-\sqrt{5}}{2}\right)^2-3.\frac{3-\sqrt{5}}{2}+1\right]\left(.....\right)+2015\)
\(=\left(\frac{14-6\sqrt{5}}{4}-\frac{9-3\sqrt{5}}{2}+1\right)\left(....\right)+2015\)
\(=0\cdot\left(......\right)+2015=2015\)
Vậy.....