Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P_1=\frac{3x^2+6x+10}{x^2+2x+3}\)
\(=3+\frac{1}{x^2+2x+3}\)
Lại có: \(x^2+2x+3\)
\(=\left(x+1\right)^2+2\ge2\)
\(\Rightarrow P_1\le3+\frac{1}{2}=\frac{7}{2}\)
Dấu = xảy ra khi x=-1
P2 tương tự
bài 1 dễ òy tự lm mà nâng cao kiến thức ;))
Bài 2 ) làm mẫu ý b ; a vận dụng làm tương tự
Gọi \(A=\frac{x}{\left(x+100\right)^2}\)Ta có : \(A=\frac{x}{x^2+200x+10000}\)
\(\Leftrightarrow Ax^2+200Ax+10000A=x\)
\(\Leftrightarrow Ax^2+200Ax-x+10000A=0\)
\(\Leftrightarrow Ax^2+\left(200A-1\right)x+10000A=0\)
Để pt trên có nghiệm thì \(\Delta=\left(200A-1\right)^2-4.A.10000A\ge0\)
\(\Leftrightarrow40000A^2-400A+1-40000A^2\ge0\)
\(\Leftrightarrow-400A+1\ge0\Rightarrow A\le\frac{1}{400}\) có max là \(\frac{1}{400}\)
Dấu "=" xảy ra \(\Leftrightarrow x=100\)
Vậy \(A_{max}=\frac{1}{400}\) tại \(x=100\)
Alo, cho hỏi cái bạn. cái tam giác là gì thế??? Giải giúp luôn bài 1 đi =((
Tìm min:
$F=3x^2+x-2=3(x^2+\frac{x}{3})-2$
$=3[x^2+\frac{x}{3}+(\frac{1}{6})^2]-\frac{25}{12}$
$=3(x+\frac{1}{6})^2-\frac{25}{12}\geq \frac{-25}{12}$
Vậy $F_{\min}=\frac{-25}{12}$. Giá trị này đạt tại $x+\frac{1}{6}=0$
$\Leftrightarrow x=\frac{-1}{6}$
Tìm min
$G=4x^2+2x-1=(2x)^2+2.2x.\frac{1}{2}+(\frac{1}{2})^2-\frac{5}{4}$
$=(2x+\frac{1}{2})^2-\frac{5}{4}\geq 0-\frac{5}{4}=\frac{-5}{4}$ (do $(2x+\frac{1}{2})^2\geq 0$ với mọi $x$)
Vậy $G_{\min}=\frac{-5}{4}$. Giá trị này đạt tại $2x+\frac{1}{2}=0$
$\Leftrightarrow x=\frac{-1}{4}$
\(A=\dfrac{3x^2-6x+17}{x^2-2x+5}\)
\(=3+\dfrac{2}{x^2-2x+5}\)
Mà \(x^2-2x+5\ge4\)
=> \(\dfrac{2}{x^2-2x+5}\le\dfrac{1}{2}\)
=> A ≤ 7/2
Dấu "=" xảy ra ⇔ x = 1
Ta có : \(A=\dfrac{3x^2-6x+17}{x^2-2x+5}=\dfrac{3x^2-6x+15+2}{x^2-2x+5}=\dfrac{3\left(x^2-2x+5\right)+2}{x^2-2x+5}\)
\(=3+\dfrac{2}{x^2-2x+5}\)
- Thấy : \(x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\)
Lại có : \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-1\right)^2+4\ge4\forall x\)
\(\Rightarrow\dfrac{2}{x^2-2x+5}\le\dfrac{2}{4}=\dfrac{1}{2}\)
\(\Rightarrow3+\dfrac{2}{x^2-2x+5}\le\dfrac{7}{2}\)
\(HayA\le\dfrac{7}{2}\)
Vậy MaxA = \(\dfrac{7}{2}\) Dấu " = " xảy ra <=> x - 1 = 0
<=> x = 1 .
\(A=\frac{3x^2+6x+10}{x^2+2x+3}=\frac{3x^2+6x+9}{x^2+2x+3}+\frac{1}{x^2+2x+3}\)
\(=3+\frac{1}{x^2+2x+3}=3+\frac{1}{\left(x+1\right)^2+2}\le3+\frac{1}{2}=\frac{7}{2}\)
Dấu "=" xảy ra <=> x=-1
Vậy GTLN của A=7/2 khi x=-1
c=3+7/(x^2+2x+3)
max(c)=min(x^2+2x+3)=min[(x+1)^2+2]=2
max(c)=3+7/2=13/2 khi x=-1