K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2021

\(Q=\frac{2017}{x-8\sqrt{x}+2018}=\frac{2017}{\left(\sqrt{x}-4\right)^2+2002}\)

ta có \(\left(\sqrt{x}-4\right)^2\ge0\)

\(Q\le\frac{2017}{2002}\)

dấu "="  xảy ra khi \(x=16\)

\(MAX:Q=\frac{2017}{2002}\)

14 tháng 5 2017

\(\frac{\sqrt{\left(x-2017\right)2019}}{\sqrt{2019}\left(x+2\right)}+\frac{\sqrt{\left(x-2018\right)2018}}{\sqrt{2018}x}\le\frac{x-2017+2019}{2\sqrt{2019}\left(x+2\right)}+\frac{x-2018+2018}{2\sqrt{2018}x}\)

\(=\frac{1}{2\sqrt{2019}}+\frac{1}{2\sqrt{2018}}\)

''='' khi x=4036

1 tháng 6 2018

Ta có: \(A=\left(x+y\right).1=\left(x+y\right).\left(\frac{2017}{x}+\frac{2018}{y}\right)=2017+2018.\frac{x}{y}+2017.\frac{y}{x}+2018\)

\(\Leftrightarrow A=4035+2017\left(\frac{x}{y}+\frac{y}{x}\right)+\frac{x}{y}\ge4035+2017.2+\frac{x}{y}\)

\(\Leftrightarrow A\ge8069+\frac{x}{y}\)

Dấu " = " xảy ra \(\Leftrightarrow\frac{x}{y}=\frac{y}{x}\Leftrightarrow x^2=y^2\Leftrightarrow x=y=4035\)( thỏa đề bài )

\(\Leftrightarrow minA=8069+1=8070\)

1 tháng 6 2018

có cả làm bất đẳng thức kiểu này nữa à :)))

Ta có : \(x^2+y^2+z^2-xy-yz-zx=\frac{1}{2}.2.\left(x^2+y^2+z^2-xy-yz-zx\right)\)

\(=\frac{1}{2}\left[\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2\right]\ge0\)\(\Rightarrow x^2+y^2+z^2\ge xy+yz+xz\)

Đẳng thức xảy ra khi \(x=y=z\)

18 tháng 10 2021

Trước tiên ta chứng minh:

\(x\sqrt{x}-3\sqrt{x}+3>0\)

\(\Leftrightarrow\left(x\sqrt{x}-2x+\sqrt{x}\right)+\left(2x-4\sqrt{x}+2\right)+1>0\)

\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)^2+2\left(\sqrt{x}-1\right)^2+1>0\)(đúng )

\(\Rightarrow A=\frac{\sqrt{x}}{x\sqrt{x}-3\sqrt{x}+3}\ge0\)

Ta chứng minh:

\(A=\frac{\sqrt{x}}{x\sqrt{x}-3\sqrt{x}+3}< 2\)

\(\Leftrightarrow2x\sqrt{x}-6\sqrt{x}+6-\sqrt{x}>0\)

\(\Leftrightarrow2x\sqrt{x}-7\sqrt{x}+6>0\)

\(\Leftrightarrow\left(2x\sqrt{x}-4x+2\right)+\left(4x-\frac{2.2.7}{4}\sqrt{x}+\frac{49}{16}\right)+\frac{47}{16}>0\)

\(\Leftrightarrow2\sqrt{x}\left(\sqrt{x}-1\right)^2+\left(2\sqrt{x}-\frac{7}{2}\right)^2+\frac{47}{16}>0\)(đúng )

Từ đây ta được: \(0\le A< 1\)

\(\Rightarrow A=\left\{0;1\right\}\)

Thế A vô tìm x nha. Cái nào thỏa mãn thì lụm không thì bỏ nha.

18 tháng 10 2021

Cái đoạn kia là: \(0\le A< 2\)nha

12 tháng 8 2019

\(Q=\frac{2x+2\sqrt{x}+2}{-\sqrt{x}}+\sqrt{x}\)

\(Q=-2\sqrt{x}-2-\frac{2}{\sqrt{x}}+\sqrt{x}\)

\(Q=-\sqrt{x}-\frac{2}{\sqrt{x}}-2\)

\(\sqrt{x}+\frac{2}{\sqrt{x}}\ge2\sqrt{2}\Rightarrow-\left(\sqrt{x}+\frac{2}{\sqrt{x}}\right)\le-2\sqrt{2}\)

\(\Rightarrow Q\le-2\sqrt{2}-2\)

\("="\Leftrightarrow x=\sqrt{2}\)