Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: \(=3\left(x+\dfrac{2}{3}\sqrt{x}+\dfrac{1}{3}\right)\)
\(=3\left(x+2\cdot\sqrt{x}\cdot\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{2}{9}\right)\)
\(=3\left(\sqrt{x}+\dfrac{1}{3}\right)^2+\dfrac{2}{3}>=3\cdot\dfrac{1}{9}+\dfrac{2}{3}=1\)
Dấu '=' xảy ra khi x=0
2: \(=x+3\sqrt{x}+\dfrac{9}{4}-\dfrac{21}{4}=\left(\sqrt{x}+\dfrac{3}{2}\right)^2-\dfrac{21}{4}>=-3\)
Dấu '=' xảy ra khi x=0
3: \(A=-2x-3\sqrt{x}+2< =2\)
Dấu '=' xảy ra khi x=0
5: \(=x-2\sqrt{x}+1+1=\left(\sqrt{x}-1\right)^2+1>=1\)
Dấu '=' xảy ra khi x=1
********************************************************
1) ĐK \(x\ge0\)
Ta có: \(\dfrac{2\sqrt{x}}{x+1}=\dfrac{-x+2\sqrt{x}-1+x+1}{x+1}=\dfrac{-\left(\sqrt{x}-1\right)^2}{x+1}+1\)
\(\Leftrightarrow\dfrac{2\sqrt{x}}{x+1}\le1\) (Vì \(\dfrac{-\left(\sqrt{x}-1\right)^2}{x+1}\le0\))
Vậy GTLN của biểu thức này là 1 <=> x=1
2) ĐK \(x\ge0\)
Ta có: \(\dfrac{\sqrt{x}+4}{\sqrt{x}+2}=\dfrac{2\sqrt{x}+4-\sqrt{x}}{\sqrt{x}+2}=2-\dfrac{\sqrt{x}}{\sqrt{x}+2}\)
\(\Leftrightarrow\dfrac{\sqrt{x}+4}{\sqrt{x}+2}\le2\) (Vì \(-\dfrac{\sqrt{x}}{\sqrt{x}+2}\le0\))
Vậy GTLN của biểu thức này là 2 <=> x=0
a, P=\(\left(\dfrac{x+\sqrt{x}-x-2}{\sqrt{x}+1}\right)\div\left(\dfrac{x-\sqrt{x}+\sqrt{x}-4}{x-1}\right)\)
=\(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\times\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{x-4}\)
=\(\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\)
b, P<\(\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\)<\(\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{2\sqrt{x}-2-\sqrt{x}-2}{2\left(\sqrt{x}+2\right)}< 0\)
\(\Leftrightarrow\dfrac{\sqrt{x}}{2\left(\sqrt{x}+2\right)}< 0\)
ta có: \(\sqrt{x}\ge0\)với \(\forall x\ge0;x\ne1;x\ne4\)
\(2\left(\sqrt{x}+2\right)\ge0\) với\(\forall x\ge0;x\ne1;x\ne4\)
Vậy không có giá trị nào của x để P<\(\dfrac{1}{2}\)
Khôi Bùi , DƯƠNG PHAN KHÁNH DƯƠNG, Mysterious Person, Phạm Hoàng Giang, Phùng Khánh Linh, TRẦN MINH HOÀNG, Dũng Nguyễn, Nhã Doanh, hattori heiji, ...
a: \(A=\dfrac{\sqrt{x}+x\sqrt{y}+\sqrt{y}+y\sqrt{x}+\sqrt{x}-x\sqrt{y}-\sqrt{y}+y\sqrt{x}}{1-xy}:\dfrac{1-xy+x+y+2xy}{1-xy}\)
\(=\dfrac{2\sqrt{x}+2y\sqrt{x}}{x+y+xy+1}\)
\(=\dfrac{2\sqrt{x}\left(y+1\right)}{\left(x+1\right)\left(y+1\right)}=\dfrac{2\sqrt{x}}{x+1}\)
b: \(x=\dfrac{1}{\sqrt{2}+1}=\sqrt{2}-1\)
\(A=\dfrac{2\sqrt{\sqrt{2}-1}}{\sqrt{2}-1+1}=\sqrt{2\left(\sqrt{2}-1\right)}\)
\(x=\sqrt{x^2-2x+5}=\sqrt{x^2-2x+1+4}\\ =\sqrt{\left(x-1\right)^2+4}\ge\sqrt{4}=2\)
dấu "=" xảy ra khi x=1
vậy min x=2 khi x=1
\(y=\sqrt{\dfrac{x^2}{4}-\dfrac{x}{6}+1}=\sqrt{\left(\dfrac{x}{2}\right)^2-2.\dfrac{x}{2}.\dfrac{1}{6}+\dfrac{1}{36}+\dfrac{35}{36}}\\ =\sqrt{\left(\dfrac{x}{2}-\dfrac{1}{6}\right)^2+\dfrac{35}{36}}\ge\sqrt{\dfrac{35}{36}}\)
dấu "=" xảy ra khi \(\dfrac{x}{2}-\dfrac{1}{6}=0\Rightarrow x=\dfrac{1}{3}\)
vậy min y =\(\sqrt{\dfrac{35}{36}}\) tại \(x=\dfrac{1}{3}\)
DKXD của A, ta có \(x^{2\le5\Rightarrow-\sqrt{5}\le x\le\sqrt{5}}\)
mà \(3x\ge-3\sqrt{5}\)
mặt kkhác \(\sqrt{5-x^2}\ge0\Rightarrow A=3x+x\sqrt{5-x^2}\ge-3\sqrt{5}\)
min A= \(-3\sqrt{5}\)\(\Leftrightarrow x=-\sqrt{5}\)
ĐK: \(x\ge0\)
Ta có: \(A=\dfrac{\sqrt{x}+1}{2\sqrt{x}+1}\Leftrightarrow2A=\dfrac{2\sqrt{x}+2}{2\sqrt{x}+1}=\dfrac{2\sqrt{x}+1+1}{2\sqrt{x}+1}=\dfrac{1}{2\sqrt{x}+1}+1\)
Ta thấy vì: \(2\sqrt{x}\ge0\Leftrightarrow2\sqrt{x}+1\ge1\Leftrightarrow\dfrac{1}{2\sqrt{x}+1}\le1\)
\(\Rightarrow2A\le1+1=2\Leftrightarrow A\le1\)
Dấu ''='' xảy ra khi x = 0