Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1 chuyên phan bội châu
câu c hà nội
câu g khoa học tự nhiên
câu b am-gm dựa vào hằng đẳng thử rồi đặt ẩn phụ
câu f đặt \(a=\frac{2m}{n+p};b=\frac{2n}{p+m};c=\frac{2p}{m+n}\)
Gà như mình mấy câu còn lại ko bt nha ! để bạn tth_pro full cho nhé !
Câu c quen thuộc, chém trước:
Ta có BĐT phụ: \(\frac{x^3}{x^3+\left(y+z\right)^3}\ge\frac{x^4}{\left(x^2+y^2+z^2\right)^2}\) \((\ast)\)
Hay là: \(\frac{1}{x^3+\left(y+z\right)^3}\ge\frac{x}{\left(x^2+y^2+z^2\right)^2}\)
Có: \(8(y^2+z^2) \Big[(x^2 +y^2 +z^2)^2 -x\left\{x^3 +(y+z)^3 \right\}\Big]\)
\(= \left( 4\,x{y}^{2}+4\,x{z}^{2}-{y}^{3}-3\,{y}^{2}z-3\,y{z}^{2}-{z}^{3 } \right) ^{2}+ \left( 7\,{y}^{4}+8\,{y}^{3}z+18\,{y}^{2}{z}^{2}+8\,{z }^{3}y+7\,{z}^{4} \right) \left( y-z \right) ^{2} \)
Từ đó BĐT \((\ast)\) là đúng. Do đó: \(\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}\ge\frac{x^2}{x^2+y^2+z^2}\)
\(\therefore VT=\sum\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}\ge\sum\frac{x^2}{x^2+y^2+z^2}=1\)
Done.
Câu hỏi của Đỗ Tuấn Linh - Toán lớp 9 - Học toán với OnlineMath
\(x,y,z\ge1\)nên ta có bổ đề: \(\frac{1}{a^2+1}+\frac{1}{b^2+1}\ge\frac{2}{ab+1}\)
ÁP dụng: \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}+\frac{1}{1+\sqrt[3]{xyz}}\ge\frac{2}{1+\sqrt{xy}}+\frac{2}{1+\sqrt{\sqrt[3]{xyz^4}}}\)
\(\ge\frac{4}{1+\sqrt[4]{\sqrt[3]{x^4y^4z^4}}}=\frac{4}{1+\sqrt[3]{xyz}}\)
\(\Rightarrow\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{3}{1+\sqrt[3]{xyz}}\)
Dấu = xảy ra \(x=y=z\)hoặc x=y,xz=1 và các hoán vị
trc giờ mấy bài này tui toàn quy đồng thôi, may có cách này =))
Ta có BĐT \(x^3+y^3\ge xy\left(x+y\right)\Leftrightarrow\left(x+y\right)\left(x-y\right)^2\ge0\left(true\right)\)
Hoàn toàn tương tự: \(y^3+z^3\ge yz\left(y+z\right);z^3+x^3\ge zx\left(z+x\right)\)
Do đó \(VT\le\frac{1}{xy\left(x+y\right)+1}+\frac{1}{yz\left(y+z\right)+1}+\frac{1}{zx\left(z+x+1\right)}\)
\(=\frac{1}{xy\left(x+y+z\right)}+\frac{1}{yz\left(x+y+z\right)}+\frac{1}{zx\left(x+y+z\right)}\) (thay 1 = xyz)
\(=\frac{1}{\left(x+y+z\right)}\left(\frac{x+y+z}{xyz}\right)=\frac{1}{xyz}=1\)(đpcm)
Đẳng thức xảy ra khi x =y = z
P/s :Bài này em làm nhiều trên diễn đàn hoc24 và OLM rồi nhưng cứ nhai lại:D
Với x,y>0 luôn có: \(x^3+y^3\ge xy\left(x+y\right)\) (1)
<=> \(\left(x+y\right)\left(x^2-xy+y^2\right)-xy\left(x+y\right)\ge0\)
<=>\(\left(x+y\right)\left(x^2-2xy+y^2\right)\ge0\)
<=> \(\left(x+y\right)\left(x-y\right)^2\ge0\)( luôn đúng)
Dấu "=" xảy ra <=> x=y>0
Từ (1) <=> \(x^3+y^3+1\ge xy\left(x+y\right)+1=xy\left(x+y\right)+xyz=xy\left(x+y+z\right)=\frac{1}{z}\left(x+y+z\right)\)( do xyz=1)
=> \(\frac{1}{x^3+y^3+1}\le\frac{z}{x+y+z}\)
CM tương tự : \(\frac{1}{y^3+z^3+1}\le\frac{x}{x+y+z}\)
\(\frac{1}{z^3+xz+x^3}\le\frac{y}{x+y+z}\)
Cộng vế với vế => \(\frac{1}{x^3+y^3+1}+\frac{1}{y^3+z^3+1}+\frac{1}{z^3+x^3+1}\le1\)
Dấu "=" xảy ra <=> x=y=z=1
Áp dụng bất đẳng thức AM - GM, ta được: \(2yz+2=x^2+\left(y^2+2yz+z^2\right)=x^2+\left(y+z\right)^2\ge2\sqrt{x^2.\left(y+z\right)^2}=2x\left(y+z\right)\Rightarrow yz+1\ge x\left(y+z\right)\)\(\Rightarrow VT\le\frac{x^2}{x^2+x+x\left(y+z\right)}+\frac{y+z}{x+y+z+1}+\frac{1}{xyz+3}=\frac{x+y+z}{x+y+z+1}+\frac{1}{xyz+3}\)
- Nếu \(x+y+z\le2\)thì \(VT\le1-\frac{1}{x+y+z+1}+\frac{1}{xyz+3}\le1-\frac{1}{3}+\frac{1}{3}=1\)
- Nếu \(x+y+z\ge2\), ta đặt x + y + z = p; xy + yz + zx = q; xyz = r thì áp dụng bất đẳng thức Schur, ta được \(VT\le\frac{p}{p+1}+\frac{1}{\frac{p\left(4q-p^2\right)}{9}+3}=\frac{p}{p+1}+\frac{9}{p^3-4p+27}\)
Khảo sát hàm trên với \(p\in\left[\sqrt{2};2\right]\)ta cũng có \(VT\le1\)
Vậy ta có: \(\frac{x^2}{x^2+yz+x+1}+\frac{y+z}{x+y+z+1}+\frac{1}{xyz+3}\le1\)
Đẳng thức xảy ra khi x = y = 1; z = 0
Ta có x3 + y3 - xy(x + y) = (x + y)(x - y)2 >= 0
<=> x3 + y3 >= xy(x + y)
<=> x3 + y3 + 1 >= xy(x+y+z)
<=> \(\frac{1}{x^3+y^3+1}\le\frac{1}{xy\left(x+y+z\right)}\)
Tương tự
\(\frac{1}{x^3+z^3+1}\le\frac{1}{xz\left(x+y+z\right)}\)
\(\frac{1}{y^3+z^3+1}\le\frac{1}{yz\left(x+y+z\right)}\)
Từ đó ta có VT \(\le\)\(\frac{1}{xy\left(x+y+z\right)}+\frac{1}{xz\left(x+y+z\right)}+\frac{1}{yz\left(x+y+z\right)}\)
= 1 (qui đồng là ra nha)
Vậy GTLN là 1 đạt được khi x = y = z = 1
3/2 mình nghĩ là thế