K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2018

chính xác là tìm max A=\(\frac{3x^2-6x+7}{x^2-2x+5}\)

15 tháng 7 2019

a) Ta có:

1/x+1/2x=3/2

2/2x+1/2x=3/2

3/2x=3/2

=>2x=2

=>x=1

Vậy x=1

#Học tốt

15 tháng 6 2018

Đặt \(2x^2-1=a\)

\(\Rightarrow\frac{a}{x}+\frac{5x}{a-x}=-7\)

\(\Leftrightarrow2x^2-6ax-a^2=0\)

Đặt \(a=tx\)

\(\Rightarrow2x^2-6tx^2-t^2x^2=0\)

\(\Leftrightarrow2-6t-t^2=0\)

Làm nốt nha

24 tháng 8 2020

a. \(y=\frac{2}{2x+3}\in Z\)

\(\Rightarrow2x+3\in\left\{-2;-1;1;2\right\}\)

\(\Rightarrow2x\in\left\{-5;-4;-2;-1\right\}\). Vì x thuộc Z

\(\Rightarrow x\in\left\{-2;-1\right\}\)

b. \(y=\frac{2x-1}{2x-3}=\frac{2x-3+2}{2x-3}=1+\frac{2}{2x-3}\)

Vì y thuộc Z nên 2 / 2x - 3 thuộc Z

\(\Rightarrow2x-3\in\left\{-2;-1;1;2\right\}\)

\(\Rightarrow2x\in\left\{1;2;4;5\right\}\). Vì x thuộc Z

\(\Rightarrow x\in\left\{1;2\right\}\)

c. \(y=\frac{2x^2-1}{2x-3}=\frac{x\left(2x-3\right)+2x-3-x+2}{2x-3}=x+1-\frac{x+2}{2x-3}\)

Vì y thuộc Z nên x thuộc Z ; x + 2 / 2x - 3 thuộc Z

=> 2x + 4 / 2x - 3 thuộc Z

=> 2x - 3 + 7 / 2x - 3 thuộc Z

=> 7 / 2x - 3 thuộc Z

\(\Rightarrow2x-3\in\left\{-7;-1;1;7\right\}\)

\(\Rightarrow2x\in\left\{-4;2;4;10\right\}\)

\(\Rightarrow x\in\left\{-2;1;2;5\right\}\) ( tm x thuộc Z )

d,e tương tự

24 tháng 8 2020

lm hết hộ mik

15 tháng 7 2016

b) ( x+ 2) ( 3x-2) - (3x-1) ( x-5) = 11

3x^2 +6x - 2x -4 - 3x^2 +x + 15x -5 =11

20x = 11 +4+5

20x = 20

x=1

c) 2(2x+ 1) ( 8x-3) + ( 3-4x) ( 8x-7) = 6x + 73

(4x + 2)(8x-3) + 24x - 32x^2 -3 +4x = 6x +73

32x^2 + 16x - 12x  + 24x - 32x^2 +4x -6x = 73 +6 +3

26x = 82

x= 41/13

15 tháng 7 2016

a. \(\left(x+2\right)\left(3x-2\right)-\left(3x-1\right)\left(x-5\right)=11\)

\(\Rightarrow3x^2-2x+6x-4-3x^2+15x+x-5=11\)

\(\Rightarrow20x-9=11\)

\(\Rightarrow x=1\)

Vậy..................

b. \(2\left(2x+1\right)\left(8x-3\right)+\left(3-4x\right)\left(8x-7\right)=6x+73\)

\(\Rightarrow\left(4x+2\right)\left(8x-3\right)+\left(3-4x\right)\left(8x-7\right)=6x+73\)

\(\Rightarrow32x^2-12x+16x-6+24x-21-32x^2+28x-6x=73\)

\(\Rightarrow50x-27=73\)

\(\Rightarrow x=100\)

Vậy..............

9 tháng 6 2018

2x^3 - 3x^2 + x + a x + 2 2x^3 - 3x^2 2x^2 - 7x + 15 2x^2 + 4x^2 -7x^2 + x -7x^2 - 14x 15x + a 15x + 30

Để \(2x^3-3x^2+x+a⋮\left(x+2\right)\) thì:

\(15x+a=15x+30\)

\(\Leftrightarrow a=30\)

10 tháng 6 2018
 231a
a=-22-7150

vì phép chia trên là phép chia hết nên số dư cuối cùng bằng 0. Để dư bằng 0 thì a=30

(áp dụng lược đồ horner)

8 tháng 1 2017

bài này thì mk chắc ko làm được rồi

khó quá@@@@

để mk nghĩ cái đã

good luck Anonymus The

 

8 tháng 1 2017

\(A=\frac{3x+1}{\left(x-1\right)^2}=\frac{3y+4}{y^2}\)  Trường phái mò mẫm

\(\frac{3y+4}{y^2}+\frac{9}{16}=\frac{9y^2+48y+16.4}{4y^2}=\frac{\left(3y+8\right)^2}{4y^2}\ge0\)Rồi GTNN =9/16 khi y=-8/3=> x=-5/3

2 tháng 9 2020

Bài 1.

a) x( 8x - 2 ) - 8x2 + 12 = 0

<=> 8x2 - 2x - 8x2 + 12 = 0 

<=> 12 - 2x = 0

<=> 2x = 12

<=> x = 6

b) x( 4x - 5 ) - ( 2x + 1 )2 = 0

<=> 4x2 - 5x - ( 4x2 + 4x + 1 ) = 0

<=> 4x2 - 5x - 4x2 - 4x - 1 = 0

<=> -9x - 1 = 0

<=> -9x = 1

<=> x = -1/9

c) ( 5 - 2x )( 2x + 7 ) = ( 2x - 5 )( 2x + 5 )

<=> -4x2 - 4x + 35 = 4x2 - 25

<=> -4x2 - 4x + 35 - 4x2 + 25 = 0

<=> -8x2 - 4x + 60 = 0

<=> -8x2 + 20x - 24x + 60 = 0

<=> -4x( 2x - 5 ) - 12( 2x - 5 ) = 0

<=> ( 2x - 5 )( -4x - 12 ) = 0

<=> \(\orbr{\begin{cases}2x-5=0\\-4x-12=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-3\end{cases}}\)

d) 64x2 - 49 = 0

<=> ( 8x )2 - 72 = 0

<=> ( 8x - 7 )( 8x + 7 ) = 0

<=> \(\orbr{\begin{cases}8x-7=0\\8x+7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{8}\\x=-\frac{7}{8}\end{cases}}\)

e) ( x2 + 6x + 9 )( x2 + 8x + 7 ) = 0

<=> ( x + 3 )2( x2 + x + 7x + 7 ) = 0

<=> ( x + 3 )[ x( x + 1 ) + 7( x + 1 ) ] = 0

<=> ( x + 3 )2( x + 1 )( x + 7 ) = 0

<=> x = -3 hoặc x = -1 hoặc x = -7

g) ( x2 + 1 )( x2 - 8x + 7 ) = 0

Vì x2 + 1 ≥ 1 > 0 với mọi x

=> x2 - 8x + 7 = 0

=> x2 - x - 7x + 7 = 0

=> x( x - 1 ) - 7( x - 1 ) = 0

=> ( x - 1 )( x - 7 ) = 0

=> \(\orbr{\begin{cases}x-1=0\\x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=7\end{cases}}\)

Bài 2.

a) ( x - 1 )2 - ( x - 2 )( x + 2 )

= x2 - 2x + 1 - ( x2 - 4 )

= x2 - 2x + 1 - x2 + 4

= -2x + 5

b) ( 3x + 5 )2 + ( 26x + 10 )( 2 - 3x ) + ( 2 - 3x )2

= 9x2 + 30x + 25 - 78x2 + 22x + 20 + 9x2 - 12x + 4

= ( 9x2 - 78x2 + 9x2 ) + ( 30x + 22x - 12x ) + ( 25 + 20 + 4 )

= -60x2 + 40x2 + 49

d) ( x + y )2 - ( x + y - 2 )2

= [ x + y - ( x + y - 2 ) ][ x + y + ( x + y - 2 ) ]

= ( x + y - x - y + 2 )( x + y + x + y - 2 )

= 2( 2x + 2y - 2 )

= 4x + 4y - 4

Bài 3.

 A = 3x2 + 18x + 33

= 3( x2 + 6x + 9 ) + 6 

= 3( x + 3 )2 + 6 ≥ 6 ∀ x

Đẳng thức xảy ra <=> x + 3 = 0 => x = -3

=> MinA = 6 <=> x = -3

B = x2 - 6x + 10 + y2

= ( x2 - 6x + 9 ) + y2 + 1

= ( x - 3 )2 + y2 + 1 ≥ 1 ∀ x,y

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-3=0\\y^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=0\end{cases}}\)

=> MinB = 1 <=> x = 3 ; y = 0

C = ( 2x - 1 )2 + ( x + 2 )2

= 4x2 - 4x + 1 + x2 + 4x + 4

= 5x2 + 5 ≥ 5 ∀ x

Đẳng thức xảy ra <=> 5x2 = 0 => x = 0

=> MinC = 5 <=> x = 0

D = -2/7x2 - 8x + 7 ( sửa thành tìm Max )

Để D đạt GTLN => 7x2 - 8x + 7 đạt GTNN

7x2 - 8x + 7 

= 7( x2 - 8/7x + 16/49 ) + 33/7

= 7( x - 4/7 )2 + 33/7 ≥ 33/7 ∀ x

Đẳng thức xảy ra <=> x - 4/7 = 0 => x = 4/7

=> MaxC = \(\frac{-2}{\frac{33}{7}}=-\frac{14}{33}\)<=> x = 4/7