\(A=-2x^2+8x+1\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2024

\(A=-2x^2+8x+1\\=-2(x^2-4x)+1\\=-2(x^2-4x+4)+8+1\\=-2(x-2)^2+9\)

Ta thấy: \(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow-2\left(x-2\right)^2\le0\forall x\)

\(\Rightarrow A=-2\left(x-2\right)^2+9\le9\forall x\)

Dấu \("="\) xảy ra khi: \(x-2=0\Leftrightarrow x=2\)

Vậy \(Max_A=9\) khi \(x=2\).

NV
2 tháng 1 2024

\(A=-2x^2+8x-8+9=9-2\left(x^2-4x+4\right)=9-2\left(x-2\right)^2\)

Do \(\left(x-2\right)^2\ge0;\forall x\Rightarrow9-2\left(x-2\right)^2\le9\)

\(\Rightarrow A\le9;\forall x\)

Hay \(A_{max}=9\) khi \(x-2=0\Rightarrow x=2\)

18 tháng 9 2017

câu 1 

ta có .....

lười viết Min - cốp xki nha

18 tháng 9 2017

DKXD của A, ta có \(x^{2\le5\Rightarrow-\sqrt{5}\le x\le\sqrt{5}}\)

mà \(3x\ge-3\sqrt{5}\)

mặt kkhác \(\sqrt{5-x^2}\ge0\Rightarrow A=3x+x\sqrt{5-x^2}\ge-3\sqrt{5}\)

min A= \(-3\sqrt{5}\)\(\Leftrightarrow x=-\sqrt{5}\)

12 tháng 9 2016
Mình giải rồi mà đăng lên nó bị mất kết quả mất. Mà giờ máy hết pin rồi lát nếu không ai giải mình giải lại cho
12 tháng 9 2016

nhân chéo dùng delta đi bạn

tích mình với

ai tích mình

mình tích lại

thanks

14 tháng 2 2019

Tích mình đi mình tích lại

2 tháng 11 2020

cảm ơn bạn

NV
2 tháng 11 2020

a. \(2x-\sqrt{x}+1=2\left(\sqrt{x}-\frac{1}{4}\right)^2+\frac{7}{8}\ge\frac{7}{8}\)

\(\Rightarrow\frac{1}{2x-\sqrt{x}+1}\le\frac{1}{\frac{7}{8}}=\frac{8}{7}\)

b.

\(x-2\sqrt{x}+3=\left(\sqrt{x}-1\right)^2+2\ge2\)

\(\Rightarrow\frac{1}{x-2\sqrt{x}+3}\le\frac{1}{2}\)

c.

\(\sqrt{1-x^2}\ge0\Rightarrow1+\sqrt{1-x^2}\ge1\)

\(\Rightarrow\frac{1}{1+\sqrt{1-x^2}}\le1\)

2.

a. \(\frac{2}{6x-5-9x^2}=\frac{2}{-\left(3x-1\right)^2-4}\ge\frac{2}{-4}=-\frac{1}{2}\)

b. \(\frac{3x^2-8x+6}{x^2-2x+1}=\frac{2\left(x^2-2x+1\right)+x^2-4x+4}{x^2-2x+1}=2+\left(\frac{x-2}{x-1}\right)^2\ge2\)

20 tháng 12 2016

\(A=2x+\sqrt{4-2x^2}=\sqrt{2}.\sqrt{2x^2}+\sqrt{4-2x^2}\)

áp dụng BĐT bunhiacopxki,ta có:

\(A^2\le\left(2+1\right)\left(2x^2+4-2x^2\right)=3.4=12\)

\(\Leftrightarrow A\le\sqrt{12}\)

dấu = xảy ra khi \(\frac{\sqrt{2}}{\sqrt{2}x}=\frac{1}{\sqrt{4-2x^2}}\Leftrightarrow4-2x^2=x^2\Leftrightarrow x=\sqrt{\frac{4}{3}}=\frac{2}{\sqrt{3}}\)

vậy Amax = \(\sqrt{12}\)khi x=\(\frac{2}{\sqrt{3}}\)

28 tháng 7 2017

b)Từ \(a+b+c=6\Rightarrow\left(a+b+c\right)^2=36\)

\(\Rightarrow36=a^2+b^2+c^2+2\left(ab+bc+ca\right)=P+ab+bc+ca\)

\(\Rightarrow P=36-ab-bc-ca\). Cần tìm \(GTNN\) của \(ab+bc+ca\)

Không mất tính tổng quát giả sử \(a=max\left\{a,b,c\right\}\)

\(\Rightarrow a+b+c=6\le3a\Rightarrow2\le a\le4\). Lại có:

\(ab+bc+ca\ge ab+ac=a\left(b+c\right)=a\left(6-a\right)\ge8\)

Suy ra GTNN của \(ab+bc+ca=8\Leftrightarrow\hept{\begin{cases}a=4\\b=2\\c=0\end{cases}}\)

Vậy GTLNP là \(36-8=28\) khi \(\hept{\begin{cases}a=4\\b=2\\c=0\end{cases}}\)

10 tháng 8 2017

a, dk \(1-16x^2\ge0\Leftrightarrow\left(1-4x\right)\left(1+4x\right)\ge0\)

        \(\Leftrightarrow-\frac{1}{4}\le x\le\frac{1}{4}\)

b tuong tu

c, \(\sqrt{\left(x-3\right)\left(5-x\right)}\ge0\Leftrightarrow\left(x-3\right)\left(5-x\right)\ge0\Leftrightarrow3\le x\le5\)

d.\(\sqrt{x^2-x+1}>0\)

ma \(x^2-x+1=x^2-2.\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)

suy ra thoa man vs moi x

22 tháng 6 2017

a)\(y=\sqrt{-x^2+2x-1+2}=\sqrt{-\left(x^2-2x+1\right)+2}\)

\(=\sqrt{-\left(x-1\right)^2+2}\)

Dễ thấy: \(-\left(x-1\right)^2\le0\Rightarrow-\left(x-1\right)^2+2\le2\)

\(\Rightarrow y=\sqrt{-\left(x-1\right)^2+2}\le\sqrt{2}\)

Đẳng thức xảy ra khi \(x=1\)

b)\(y=2-\sqrt{4x^2-4x+1}\)

\(=2-\sqrt{\left(2x-1\right)^2}\)

Dễ thấy: \(\sqrt{\left(2x-1\right)^2}\ge0\Rightarrow-\sqrt{\left(2x-1\right)^2}\le0\)

\(y=2-\sqrt{4x^2-4x+1}\le2\)

Đẳng thức xảy ra khi \(x=\frac{1}{2}\)

\(A=\frac{2x^2-4x+2+x^2-4x+4+4}{x^2-2x+1}\)

\(=2+\left(\frac{x-2}{x-1}\right)^2\ge2\)

Dấu ''='' xảy ra khi GTNN của A=2

8 tháng 9 2019

A\(\frac{2x^2-4x+2+x^2-4x+4}{x^2-2x+1}=2+\left(\frac{x-2}{x-1}\right)^2\ge2\)

dấu = xảy ra x=2

chúc ban hk tốt