Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
DKXD của A, ta có \(x^{2\le5\Rightarrow-\sqrt{5}\le x\le\sqrt{5}}\)
mà \(3x\ge-3\sqrt{5}\)
mặt kkhác \(\sqrt{5-x^2}\ge0\Rightarrow A=3x+x\sqrt{5-x^2}\ge-3\sqrt{5}\)
min A= \(-3\sqrt{5}\)\(\Leftrightarrow x=-\sqrt{5}\)
a. \(2x-\sqrt{x}+1=2\left(\sqrt{x}-\frac{1}{4}\right)^2+\frac{7}{8}\ge\frac{7}{8}\)
\(\Rightarrow\frac{1}{2x-\sqrt{x}+1}\le\frac{1}{\frac{7}{8}}=\frac{8}{7}\)
b.
\(x-2\sqrt{x}+3=\left(\sqrt{x}-1\right)^2+2\ge2\)
\(\Rightarrow\frac{1}{x-2\sqrt{x}+3}\le\frac{1}{2}\)
c.
\(\sqrt{1-x^2}\ge0\Rightarrow1+\sqrt{1-x^2}\ge1\)
\(\Rightarrow\frac{1}{1+\sqrt{1-x^2}}\le1\)
2.
a. \(\frac{2}{6x-5-9x^2}=\frac{2}{-\left(3x-1\right)^2-4}\ge\frac{2}{-4}=-\frac{1}{2}\)
b. \(\frac{3x^2-8x+6}{x^2-2x+1}=\frac{2\left(x^2-2x+1\right)+x^2-4x+4}{x^2-2x+1}=2+\left(\frac{x-2}{x-1}\right)^2\ge2\)
\(A=2x+\sqrt{4-2x^2}=\sqrt{2}.\sqrt{2x^2}+\sqrt{4-2x^2}\)
áp dụng BĐT bunhiacopxki,ta có:
\(A^2\le\left(2+1\right)\left(2x^2+4-2x^2\right)=3.4=12\)
\(\Leftrightarrow A\le\sqrt{12}\)
dấu = xảy ra khi \(\frac{\sqrt{2}}{\sqrt{2}x}=\frac{1}{\sqrt{4-2x^2}}\Leftrightarrow4-2x^2=x^2\Leftrightarrow x=\sqrt{\frac{4}{3}}=\frac{2}{\sqrt{3}}\)
vậy Amax = \(\sqrt{12}\)khi x=\(\frac{2}{\sqrt{3}}\)
b)Từ \(a+b+c=6\Rightarrow\left(a+b+c\right)^2=36\)
\(\Rightarrow36=a^2+b^2+c^2+2\left(ab+bc+ca\right)=P+ab+bc+ca\)
\(\Rightarrow P=36-ab-bc-ca\). Cần tìm \(GTNN\) của \(ab+bc+ca\)
Không mất tính tổng quát giả sử \(a=max\left\{a,b,c\right\}\)
\(\Rightarrow a+b+c=6\le3a\Rightarrow2\le a\le4\). Lại có:
\(ab+bc+ca\ge ab+ac=a\left(b+c\right)=a\left(6-a\right)\ge8\)
Suy ra GTNN của \(ab+bc+ca=8\Leftrightarrow\hept{\begin{cases}a=4\\b=2\\c=0\end{cases}}\)
Vậy GTLNP là \(36-8=28\) khi \(\hept{\begin{cases}a=4\\b=2\\c=0\end{cases}}\)
a, dk \(1-16x^2\ge0\Leftrightarrow\left(1-4x\right)\left(1+4x\right)\ge0\)
\(\Leftrightarrow-\frac{1}{4}\le x\le\frac{1}{4}\)
b tuong tu
c, \(\sqrt{\left(x-3\right)\left(5-x\right)}\ge0\Leftrightarrow\left(x-3\right)\left(5-x\right)\ge0\Leftrightarrow3\le x\le5\)
d.\(\sqrt{x^2-x+1}>0\)
ma \(x^2-x+1=x^2-2.\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)
suy ra thoa man vs moi x
a)\(y=\sqrt{-x^2+2x-1+2}=\sqrt{-\left(x^2-2x+1\right)+2}\)
\(=\sqrt{-\left(x-1\right)^2+2}\)
Dễ thấy: \(-\left(x-1\right)^2\le0\Rightarrow-\left(x-1\right)^2+2\le2\)
\(\Rightarrow y=\sqrt{-\left(x-1\right)^2+2}\le\sqrt{2}\)
Đẳng thức xảy ra khi \(x=1\)
b)\(y=2-\sqrt{4x^2-4x+1}\)
\(=2-\sqrt{\left(2x-1\right)^2}\)
Dễ thấy: \(\sqrt{\left(2x-1\right)^2}\ge0\Rightarrow-\sqrt{\left(2x-1\right)^2}\le0\)
\(y=2-\sqrt{4x^2-4x+1}\le2\)
Đẳng thức xảy ra khi \(x=\frac{1}{2}\)
\(A=\frac{2x^2-4x+2+x^2-4x+4+4}{x^2-2x+1}\)
\(=2+\left(\frac{x-2}{x-1}\right)^2\ge2\)
Dấu ''='' xảy ra khi GTNN của A=2
A\(\frac{2x^2-4x+2+x^2-4x+4}{x^2-2x+1}=2+\left(\frac{x-2}{x-1}\right)^2\ge2\)
dấu = xảy ra x=2
chúc ban hk tốt
\(A=-2x^2+8x+1\\=-2(x^2-4x)+1\\=-2(x^2-4x+4)+8+1\\=-2(x-2)^2+9\)
Ta thấy: \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow-2\left(x-2\right)^2\le0\forall x\)
\(\Rightarrow A=-2\left(x-2\right)^2+9\le9\forall x\)
Dấu \("="\) xảy ra khi: \(x-2=0\Leftrightarrow x=2\)
Vậy \(Max_A=9\) khi \(x=2\).
\(A=-2x^2+8x-8+9=9-2\left(x^2-4x+4\right)=9-2\left(x-2\right)^2\)
Do \(\left(x-2\right)^2\ge0;\forall x\Rightarrow9-2\left(x-2\right)^2\le9\)
\(\Rightarrow A\le9;\forall x\)
Hay \(A_{max}=9\) khi \(x-2=0\Rightarrow x=2\)