Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đa thức x + 4 có nghiệm khi và chỉ khi x + 4 = 0 \(\Leftrightarrow x=-4\)
Vậy -4 là nghiệm của đa thức x + 4.
Để đa thức 4x2 - 5x + x^3 + m chia hết cho đa thức x + 4 thì -4 cũng là nghiệm của đa thức 4x2 - 5x + x^3 + m
Khi đó: \(4.\left(-4\right)^2-5.\left(-4\right)+\left(-4\right)^3+m=0\)
\(\Leftrightarrow64+20-64+m=0\)
\(\Leftrightarrow20+m=0\)
\(\Leftrightarrow m=-20\)
Vậy m = -20 thì đa thức 4x2 - 5x + x^3 + m chia hết cho đa thức x + 4
=\(x^3-3x^2-x^2+3x+x-a=\left(x-3\right)\left(x^2-x\right)+\left(x-a\right)\)
vì (x-3)(x^2-x) đã chia hết cho x-3 rồi => đa thức muốn chia hết cho x-3 <=> x-a phải chia hết cho x-3 <=> a=3
\(2x^3+x^2-4x+m⋮2x-1\)
\(\Leftrightarrow2x^3-x^2+2x^2-x-3x+\dfrac{3}{2}+m-\dfrac{3}{2}⋮2x-1\)
\(\Leftrightarrow m=\dfrac{3}{2}\)
\(A\left(x\right)⋮B\left(x\right)\)
\(\Leftrightarrow2x^3-x^2+2x^2-x-3x+\dfrac{3}{2}+m-\dfrac{3}{2}⋮2x-1\)
\(\Leftrightarrow m=\dfrac{3}{2}\)
GIẢ SỬ f(x) chia hết cho g(x)
=>10x2-7x-m=(2x-3).Q(x)
thay x=3/2,ta có:
10.9/6-7.3/2-m=0
<=>15-10,5-m=0
<=>4,5-m=0
<=>m=4,5
vậy m=4,5
\(\Leftrightarrow10x^2-15x+8x-12-m+12⋮2x-3\)
hay m=12
?????
`Answer:`
Áp dụng định lý Bơdu: `x-3=0<=>x=3`
Thay `x=3` vào đa thức, ta được: `3^2-4.3+m=0<=>9-12+m=0<=>-3+m=0<=>m=3`