K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2019

ta có hệ \(\left\{{}\begin{matrix}2^4-2^3-3\cdot2^2-2a+b=2\cdot2-3\\\left(-1\right)^4-\left(-1\right)^3-3\left(-1\right)^2+a+b=2\cdot\left(-1\right)-3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-2a+b-4=1\\a+b-1=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-3\\b=-1\end{matrix}\right.\)

3 tháng 12 2015

đặt chia là ra ma

 

29 tháng 10 2017

a) Ta có: \(x^2-x-2=0\)

\(\Leftrightarrow x^2+x-2x-2=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

Ap dung Be du ta co:

\(\left\{{}\begin{matrix}2^4-2^3-3.2^2+2a+b=2.2-3\\\left(-1\right)^4-\left(-1\right)^3-3.\left(-1\right)^2-a+b=2.\left(-1\right)-3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2a+b=5\\-a+b=-4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=-1\end{matrix}\right.\)

Câu b tương tự rồi nhé

AH
Akai Haruma
Giáo viên
27 tháng 10 2018

Lời giải:

Áp dụng định lý Bê-du về phép chia đa thức

a)

Số dư của phép chia đa thức \(f(x)=2x^3-3x^2+x+a\) cho $x+2$ là:

\(f(-2)=2(-2)^3-3(-2)^2+(-2)+a=-30+a\)

Để phép chia là chia hết thì số dư bằng $0$

Hay $-30+a=0$ suy ra $a=30$

b) Số dư của phép chia đa thức $f(x)=2x^2+ax+1$ cho $x-3$ là:

\(f(3)=2.3^2+3a+1=19+3a\)

Số dư bằng $4$ \(\Leftrightarrow 19+3a=4\Rightarrow a=-5\)

20 tháng 12 2019

bơ du chứ ko phải bê du nha pn

16 tháng 11 2022

a: =>3x^3-x^2+3x^2-x-6x+2+m-2 chia hết cho 3x-1

=>m-2=0

=>m=2

b: =>\(x^4+3x^3-x^2+3x^3+9x^2-3x-x^2+3x-1-6x+a+1⋮x^2+3x-1\)

=>-6x+a+1=0

=>6x=a+1

=>x=(a+1)/6