K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1 2021

Phương trình hoành độ giao điểm của 2 đồ thị là

x2 - 4x - 3 = x - m 

⇔ x2 - 5x + m - 3 = 0 (1)

Để 2 đồ thị cắt nhau tại 2 điểm nằm về 2 phía của trục tung thì (1) phải có 2 nghiệm phân biệt, một nghiệm x > 0 (bên phải trục tung) và một nghiệm x < 0 (bên trái trục tung) tức (1) có 2 nghiệm trái dấu

⇔ \(\left\{{}\begin{matrix}\Delta>0\\x_1.x_2< 0\end{matrix}\right.\)

⇔ \(\left\{{}\begin{matrix}25-4\left(m-3\right)>0\\m-3< 0\end{matrix}\right.\)

⇔ \(\left\{{}\begin{matrix}25-4m+12>0\\m-3< 0\end{matrix}\right.\)

⇔ \(\left\{{}\begin{matrix}4m< 37\\m< 3\end{matrix}\right.\)

⇔ \(\left\{{}\begin{matrix}m< \dfrac{37}{4}\\m< 3\end{matrix}\right.\)

⇔ m < 3

Vậy tập hợp các giá trị của m thỏa mãn ycbt là

M = (3; +\(\infty\))

a: Tọa độ đỉnh là:

\(\left\{{}\begin{matrix}x=\dfrac{-b}{2a}=\dfrac{-1}{2}\\y=-\dfrac{b^2-4ac}{4a}=-\dfrac{1^2-4\cdot1\cdot\left(-2\right)}{4\cdot1}=-\dfrac{1+8}{4}=-\dfrac{9}{4}\end{matrix}\right.\)

Vì (P): \(y=x^2+x-2\) có a=1>0

nên (P) đồng biến khi x>-1/2 và nghịch biến khi x<-1/2

Vẽ (P): loading...

b: Phương trình hoành độ giao điểm là:

\(x^2+x-2=-\left(m+1\right)x+m+2\)

=>\(x^2+x-2+\left(m+1\right)x-m-2=0\)

=>\(x^2+\left(m+2\right)x-m-4=0\)(1)

Để (P) cắt (d) tại hai điểm phân biệt A,B nằm về hai phía so với trục Oy thì phương trình (1) có hai nghiệm phân biệt trái dấu

=>-m-4<0

=>-m<4

=>m>-4

mà \(m\in Z;m\in\left[-10;4\right]\)

nên \(m\in\left\{-3;-2;-1;0;1;2;3;4\right\}\)

=>Có 8 số thỏa mãn

20 tháng 12 2020

Phương trình hoành độ giao điểm:

\(x^2-2x-3=x-m\)

\(\Leftrightarrow x^2-3x+m-3=0\left(1\right)\)

\(\left(d\right)\) cắt \(\left(P\right)\) tại hai điểm phân biệt nằm cùng một phía với trục tung khi phương trình \(\left(1\right)\) có hai nghiệm phân biệt cùng dấu

\(\left\{{}\begin{matrix}\Delta>0\\x_1x_2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}21-4m>0\\m-3>0\end{matrix}\right.\Leftrightarrow3< m< \dfrac{21}{4}\)

Theo định lí Vi-et: \(x_1+x_2=3\Rightarrow x_2=3-x_1\)

\(x^2_2=16x^2_1\)

\(\Leftrightarrow\left(3-x_1\right)^2=16x^2_1\)

\(\Leftrightarrow x_1^2-6x_1+9=16x^2_1\)

\(\Leftrightarrow15x_1^2+6x_1-9=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x_1=-1\\x_1=\dfrac{3}{5}\end{matrix}\right.\)

Nếu \(x_1=-1\Rightarrow m=-1\left(l\right)\)

Nếu \(x_1=\dfrac{3}{5}\Rightarrow m=\dfrac{111}{25}\left(tm\right)\)

Vậy \(m=\dfrac{111}{25}\)

22 tháng 12 2021

a: Thay x=3 và y=0 vào (1), ta được:

\(6-3m=0\)

hay m=2

10 tháng 12 2015

A) Để đồ thị đi qua điểm M(-1, 1) thì thay x = -1, y = 1 vào hàm số ta có:

   1 = (2m-1).(-1) + m + 1

=> m = 1

B) Hàm số đã cho là hàm bậc nhất, đồ thị là đường thẳng nên không thể đồ thị cắt trục hoành tại hai điểm được

22 tháng 6 2020

a)y=(2m-1)x+m+1
Đồ thị hàm số đi qua điểm M(-1;1) khi và chỉ khi
1=(2m-1)(-1)+m+1
Giải phương trình ẩn m, tìm được: m=1
b)y=(2m-1)x+m+1

Cho x=0⇒y=m+1⇒A(0; m+1 ) ⇒OA =\(\left|m+1\right|\)
Cho y =0 ⇒x =\(\frac{-m-1}{2m-1}\Rightarrow B\left(\frac{-m-1}{2m-1};0\right)\)

\(\Rightarrow OB=\left|\frac{-m-1}{2m-1}\right|=\frac{\left|m+1\right|}{\left|2m-1\right|}\)

△AOB cân ⇔\(\left\{{}\begin{matrix}OA=OB\\OA>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left|m+1\right|=\frac{\left|m+1\right|}{\left|2m-1\right|}\\\left|m+1\right|>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left|2m-1\right|=1\\m\ne-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2m-1=1\\2m-1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=1\\m=0\end{matrix}\right.\)

Vậy với m = 0 hoặc m = 1 thì đồ thị hàm số thỏa mãn yêu cầu của bài toán

Theo đề, ta có:

-b/2=2 và 0+0+c=6

=>c=6 và b=-4