K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 2 2021

\(\left(m^2-1\right)x-8m+9-m^2\ge0\)

\(\Leftrightarrow\left(m^2-8m-1\right)x\ge m^2-9\)

- Với \(m=4+\sqrt{17}\) ko thỏa mãn

- Với \(m=4-\sqrt{17}\) thỏa mãn

- Với \(m\ne4\pm\sqrt{17}\)

Pt nghiệm đúng với mọi \(x\ge0\) khi và chỉ khi:

\(\left\{{}\begin{matrix}m^2-8m-1>0\\\dfrac{m^2-9}{m^2-8m-1}\le0\\\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-8m-1>0\\m^2-9\le0\end{matrix}\right.\)

\(\Leftrightarrow-3\le m< 4-\sqrt{17}\)

Vậy \(-3\le m\le4-\sqrt{17}\)

NV
10 tháng 5 2021

- Với \(m=\pm1\) không thỏa mãn

- Với \(m\ne\pm1\) ta có: 

\(\Delta'=16m^2-\left(m^2-1\right)\left(9-m^2\right)=\left(m^2+3\right)^2>0\) ; \(\forall m\)

\(\Rightarrow\) BPT đã cho đúng với mọi \(x\ge0\) khi và chỉ khi: \(\left\{{}\begin{matrix}m^2-1>0\\x_1< x_2\le0\end{matrix}\right.\) (pt hệ số a dương đồng thời có 2 nghiệm ko dương)

\(\Leftrightarrow\left\{{}\begin{matrix}a=m^2-1>0\\x_1+x_2=\dfrac{8m}{m^2-1}< 0\\x_1x_2=\dfrac{9-m^2}{m^2-1}\ge0\end{matrix}\right.\) \(\Leftrightarrow-3\le m< -1\)

(Nếu \(\Delta\) không luôn dương với mọi m, ví dụ dạng \(\Delta=m^2-3m+2\) chẳng hạn thì còn 1 TH thỏa mãn nữa là \(\left\{{}\begin{matrix}a>0\\\Delta\le0\end{matrix}\right.\))

10 tháng 5 2021

Tại sao pải là 2 nghiệm ko dương ạ

DD
24 tháng 1 2022

\(f\left(x\right)=x^2+2\left(m+1\right)x+m+3\)

Để \(f\left(x\right)\ge0\)với mọi \(x\inℝ\)thì: 

\(\hept{\begin{cases}a=1>0\\\Delta'=\left(m+1\right)^2-\left(m+3\right)\ge0\end{cases}}\Leftrightarrow m^2+m-2\ge0\)

\(\Leftrightarrow\left(m+2\right)\left(m-1\right)\ge0\)

\(\Leftrightarrow\orbr{\begin{cases}m\ge1\\m\le-2\end{cases}}\).

18 tháng 12 2022

a: Để BPT có nghiệm thì \(\left\{{}\begin{matrix}\text{Δ}< =0\\2>0\end{matrix}\right.\Leftrightarrow\left(m-9\right)^2-8\left(m^2+3m+4\right)< =0\)

=>m^2-18m+81-8m^2-24m-32<=0

=>-7m^2-42m+49<=0

=>x<=-7 hoặc x>=1

b: \(\Leftrightarrow3x^2+\left(m+6\right)x-m+5>0\)

Để BPT có nghiệm thì (m+6)^2-12(-m+5)<0

=>m^2+12m+36+12m-60<0

=>m^2+24m-24<0

=>\(-12-2\sqrt{42}< m< -12+2\sqrt{42}\)

31 tháng 1 2020

\(m^2\left(x-1\right)+x-3< 0\Leftrightarrow\left(m^2+1\right)x-m^2-3< 0\)

Đặt \(f\left(x\right)=\left(m^2+1\right)x-m^2-3\)

\(f\left(x\right)< 0\forall x\in\left[-5;2\right]\Leftrightarrow\hept{\begin{cases}f\left(-5\right)< 0\\f\left(2\right)< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}-6m^2-8< 0\\m^2-1< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}6m^2+8>0\\m^2< 1\end{cases}}\Leftrightarrow\left|m\right|< 1\Leftrightarrow-1< m< 1\)

Vậy có duy nhất 1 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán, đó là giá trị m = 0

NV
2 tháng 3 2020

\(\Leftrightarrow m\left(x^2-2x\right)+x^2-4x+4>0\)

\(\Leftrightarrow mx\left(x-2\right)+\left(x-2\right)^2>0\)

\(\Leftrightarrow\left(x-2\right)\left(mx+x-2\right)>0\)

\(\Leftrightarrow mx+x-2< 0\) (do \(x-2< 0\) \(\forall x\in\left[0;1\right]\))

\(\Leftrightarrow mx< 2-x\)

- Với \(x=0\) luôn thỏa mãn

- Với \(x>0\Rightarrow m< \frac{2-x}{x}=\frac{2}{x}-1\Rightarrow m< \min\limits_{\left[0;1\right]}\left(\frac{2}{x}-1\right)=1\)

Vậy \(m< 1\)