\(mx\sqrt{x}-2mx+1\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2020

Xét \(\Delta=m^2+8>0\) nên phương trình luôn có nghiệm

Theo Viete \(x_1+x_2=-m\left(1\right);x_1x_2=-2\)

Mà \(x_1^2=4x_2^2\Leftrightarrow x_1=2x_2\left(h\right)x_1=-2x_2\)

Bạn thay vào ( 1 ) là ra pt bậc nhất 1 ẩn,khi đó dể nè :))

16 tháng 6 2017

để pt có nghiệm thì

\(\Delta'=m^2-m+2\ge0\text{ (luôn đúng)}\)

theo vi-ét ta có

\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m-2\end{matrix}\right.\)

\(M=\dfrac{-24}{x_1^2+x_2^2-6x_1x_2}=\dfrac{-24}{\left(x_1+x_2\right)^2-8x_1x_2}=\dfrac{-24}{4m^2-8m+16}=\dfrac{-6}{m^2-2m+4}\)

\(\Rightarrow Mm^2-2Mm+4M=-6\)

\(\Leftrightarrow Mm^2-2Mm+4M+6=0\)

ta có \(\Delta'=M^2-4M^2-6M=-3M^2-6M\)

để pt có nghiệm thì

\(\Delta'=-3M^2-6M\ge0\Rightarrow-2\le M\le0\)

vậy MinM=-2 tại m=1(t/m)

16 tháng 6 2017

\(\Delta\)' = \(m^2-m+2\) \(\ge0\forall m\)

\(\Rightarrow\) phương trình luôn có 2 nghiệm

theo vi ét ta có : \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m-2\end{matrix}\right.\)

ta có : M = \(\dfrac{-24}{x_1^2+x_2^2-6x_1x_2}\) = \(\dfrac{-24}{\left(x_1+x_2\right)^2-8x_1x_2}\)

= \(\dfrac{-24}{4m^2-8m+16}\) = \(\dfrac{-6}{m^2-2m+4}\) = \(\dfrac{-6}{\left(m-1\right)^2+3}\)

ta có : \(-6< 0\)\(\left(m-1\right)^2+3\ge3\forall m\)

\(\Rightarrow\) \(\dfrac{-6}{\left(m-1\right)^2+3}\) nhỏ nhất \(\Leftrightarrow\) \(\left(m-1\right)^2+3\) nhỏ nhất

\(\left(m-1\right)^2+3\ge3\forall m\) vậy giá trị nhỏ là 3

khi \(\left(m-1\right)^2=0\) \(\Leftrightarrow\) \(m-1=0\) \(\Leftrightarrow\) \(m=1\)

khi đó M = \(\dfrac{-6}{3}=-2\)

vậy giá trị nhỏ nhất của M = -2 khi m = 1

11 tháng 5 2016

ap dung vi-et

11 tháng 5 2016

khai trien ra y ak. kho qua


 

26 tháng 2 2019

Câu a:

Hỏi đáp Toán

18 tháng 6 2015

a) có nghiệm => \(\Delta=16-4\left(m+1\right)=12-4m\ge0\Leftrightarrow m\le3\)

áp dụng hệ thức vi ét ta có: x1+x2=4;   x1.x2=m+1

b) \(x1^2+x2^2=10\Leftrightarrow\left(x1+x2\right)^2-2x1x2=10\Leftrightarrow16-2\left(m+1\right)=10\Leftrightarrow m=2\)(t/m đk)

c) \(x1^3+x2^3=34\Leftrightarrow\left(x1+x2\right)^3-3x1.x2\left(x1+x2\right)=34\Leftrightarrow64-12\left(m+1\right)=34\Leftrightarrow m=\frac{3}{2}\)(t/m đk)

4 tháng 8 2020

\(x^2_2-2\left(m+1\right)x_2+6m-4=0\) la sao

AH
Akai Haruma
Giáo viên
4 tháng 8 2020

Nguyễn Thái Sơn: vì $x_2$ là nghiệm của PT $x^2-2(m+1)x+6m-4=0$ (phương trình ban đầu) đó bạn.