Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chia đa thức, ta được
\(P\left(x\right)=Q\left(x\right).\left(x+m\right)+3\left(a-m^2\right)x^2+3\left(b-am\right)x+c-bm\)
Để P(x) chia hết cho Q(x) thì
\(a-m^2=0;\text{ }b-am=0;\text{ }c-bm=0\)
\(\Leftrightarrow a=m^2;\text{ }b=am=m^3;\text{ }c=bm=m^4\)
Vậy \(a=m^2;\text{ }b=m^3;\text{ }c=m^4\)
Bị tự tin quá khả năng nhẩm mồm, sai em xin lỗi ...
a, Ta có \(P\left(x\right)=8x^3+2x^2-3x-3x^3+10-x-2x^2-3\)
\(=5x^3-4x-7\)
\(Q\left(x\right)=9x^3-4x^2+2x-3+2x+3x^2+4x^3-2\)
\(=13x^3-x^2+4x-5\)
b, Ta có : \(P\left(-\frac{1}{2}\right)=5.\left(-\frac{1}{2}\right)^3-4.\left(-\frac{1}{2}\right)-7=-\frac{45}{8}\)
c , \(M\left(x\right)=P\left(x\right)+Q\left(x\right)\)
\(5x^3-4x-7+13x^3-x^2+4x-5=18x^3-x^2-12\)
\(N\left(x\right)=P\left(x\right)-Q\left(x\right)\)
\(5x^3-4x-7-13x^3+x^2-4x+5=-8x^3-8x-2+x^2\)
d, Đặt \(5x^3-4x-7=0\)( vô nghiệm )
x^2+5 x^4+2x^3+10x+a x^2+2x-5 x^4+5x^2 2x^3-5x^2+10x+a 2x^3 +10x -5x^2+a -5x^2-25 a+25
Để x4+2x3+10x+a chia hết cho đa thức x2+5 thì
\(a+25=0\Leftrightarrow a=-25\)
Bài 3:
\(\dfrac{f\left(x\right)}{g\left(x\right)}=\dfrac{x^4+ax^2+b}{x^2-3x+2}\)
\(=\dfrac{x^4-3x^3+2x^2+3x^3-9x^2+6x+\left(a+7\right)x^2-3x\left(a+7\right)+2\left(a+7\right)+x\left(-6+3a+7\right)+b-2a-14}{x^2-3x+2}\)
Để đây là phép chia hết thì 3a+1=0 và b-2a-14=0
=>a=-1/3; b=2a+14=-2/3+14=40/3
1. Đặt \(t=x^2,t\ge0\)
\(3x^4+4x^2-2\ge3.0+4.0-2=-2\)
=> MIN = -2 khi x = 0
2. \(\left(x^2+2\right)\left(x+1\right)=0\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x^2+2=0\\x+1=0\end{array}\right.\)
Vì \(x^2+2\ge2>0\) => Vô nghiệm
Vậy x+1 = 0 => x = -1
3. Kết quả là 10
4. Ko rõ đề
2 là nghiệm của đa thức B(x)=x-2
Để đa thức A(x)=x3-3x2+5x+m chia hết cho đa thức B(x)=x-2 thì 2 cũng là nghiệm của đa thức A(x)=x3-3x2+5x+m
\(\Rightarrow A\left(2\right)=8-12+10+m=0\)
\(\Leftrightarrow6+m=0\Leftrightarrow m=-6\)
Vậy m = -6 thì đa thức A(x)=x3-3x2+5x+m chia hết cho đa thức B(x)=x-2
thực hiện phép chia hai đa thức ta có:
(x3 - 3x2 + 5x + m ) : (x - 2) = x2 - x + 3 (dư m + 6)
Đa thức A(x) chia hết cho đa thức B(x) khi: m + 6 = 0 => m = - 6
Vậy m = - 6
a) Cho x2 - x + 5=0 =>x={ \(\frac{1}{2}+\frac{\sqrt{19}}{2}i;\frac{1}{2}-\frac{\sqrt{19}}{2}i\) }
Thay giá trị của x là \(\frac{1}{2}+\frac{\sqrt{19}}{2}i\)hoặc \(\frac{1}{2}-\frac{\sqrt{19}}{2}i\) vừa tìm được vào x4 - x3 + 6x2- x sẽ luôn được kết quả là -5
=>-5 +a=0 => a=5
b) Cho x+2=0 => x=-2
Thay giá trị của x vào biểu thức 2x3 - 3x2 + x sẽ được kết quả là -30
=> -30 + a=0 => a=30
a) Cho 3n +1 =0 => n= \(\frac{-1}{3}\)
Thay n= \(\frac{-1}{3}\)vào biểu thức 3n3 + 10n2 -5 sẽ được kết quả -4
Vậy n = -4
b) Cho n-1=0 => n=1
Thay n=1 vào biểu thức 10n2 + n -10 sẽ được kết quả là 1
Vậy n = 1
a) Thay x=2 vào ta có:
\(2^2-4m\cdot2+1=0\\ \Leftrightarrow4-8m+1=0\\ \Leftrightarrow5-8m=0\\ \Leftrightarrow8m=5\\ \Leftrightarrow m=\dfrac{5}{8}\)
b) Thay x=2 vào ta có:
\(3\cdot2^2-5m\cdot2+7\\ \Leftrightarrow12-10m+7=0\\ \Leftrightarrow19-10m=0\\ \Leftrightarrow10m=19\\\Leftrightarrow m=\dfrac{19}{10}\)
a:
Đặt \(x^2-4mx+1=0\left(1\right)\)
Thay x=2 vào (1), ta được:
\(2^2-4m\cdot2+1=0\)
=>\(4-8m+1=0\)
=>5-8m=0
=>8m=5
=>\(m=\dfrac{5}{8}\)
b: Đặt \(3x^2-5mx+7=0\left(2\right)\)
Thay x=2 vào (2), ta được:
\(3\cdot2^2-5m\cdot2+7=0\)
=>12-10m+7=0
=>19-10m=0
=>10m=19
=>\(m=\dfrac{19}{10}\)