Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn ghi lại đề, \(x_1^2-2mx_1+2m-m\) xuất hiện 2 con m ở cuối nên chắc là bạn ghi nhầm chỗ nào đó
a, \(\Delta'=1-\left(2m-5\right)=6-2m\)
để pt có nghiệm kép \(6-2m=0\Leftrightarrow m=3\)
b, để pt có 2 nghiệm pb \(6-2m>0\Leftrightarrow m< 3\)
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=2m-5\end{matrix}\right.\)
Ta có \(\left(x_1+x_2\right)^2-7x_1x_2=0\)
\(4-7\left(2m-5\right)=0\Leftrightarrow2m-5=\dfrac{4}{7}\Leftrightarrow m=\dfrac{39}{14}\)(tm)
a) Xét pt \(x^2-2x+2m-5=0\), có \(\Delta'=\left(-1\right)^2-\left(2m-5\right)=1-2m+5=6-2m\)
Để pt có nghiệm kép thì \(\Delta'=0\)hay \(6-2m=0\)\(\Leftrightarrow m=3\)
b) Để pt có 2 nghiệm phân biệt thì \(\Delta'>0\)hay \(6-2m>0\)\(\Leftrightarrow m< 3\)
Khi đó, ta có \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=2m-5\end{cases}}\)(hệ thức Vi-ét)
Từ đó \(x_1^2+x_2^2=5x_1x_2\)\(\Leftrightarrow\left(x_1+x_2\right)^2=7x_1x_2\)\(\Leftrightarrow2^2=7\left(2m-5\right)\)\(\Leftrightarrow4=14m-35\)\(\Leftrightarrow14m=39\)\(\Leftrightarrow m=\frac{39}{14}\)(nhận)
Vậy để [...] thì \(m=\frac{39}{14}\)
Đk pt có 2 nghiêm pb
\(\Delta=a^2-4>0\)
=>\(a^2>4\)
=>\(\orbr{\begin{cases}a>2\\a< -2\end{cases}}\)
theo Đly Vi-et, ta có x1+x2=-a
x1.x2=1
\(\frac{x_1^2}{x_2^2}+\frac{x_2^2}{x_1^2}=\frac{x_1^4+x_2^4}{x_1^2.x_2^2}=\frac{\left(x_1^2+x_2^2\right)^2-2x_1^2x_2^2}{1}=\left(\left(x_1+x_2\right)^2-2x_1x_2\right)^2-2=\left(a^2-2\right)^2-2\)
=>(a2-2)2-2 >7
=>(a2-2)2 >9
=>\(\orbr{\begin{cases}a^2-2>3\\a^2-2< -3\end{cases}=>\orbr{\begin{cases}a^2>5\\a^2< -1\left(loai\right)\end{cases}=>\orbr{\begin{cases}a>\sqrt{5}\\a< -\sqrt{5}\end{cases}}}\left(tmdk\right)}\)
Để PT có 2 nghiệm phân biệt thì
\(\Delta'=\left(m-2\right)^2-\left(m^2-2m+4\right)>0\)
\(\Leftrightarrow m< 0\)
Theo vi et ta có:
\(\hept{\begin{cases}x_1+x_2=-2m+4\\x_1.x_2=m^2-2m+4\end{cases}}\)
Theo đề bài thì
\(\frac{2}{x_1^2+x_2^2}-\frac{1}{x_1.x_2}=\frac{15}{m}\)
\(\Leftrightarrow\frac{2}{\left(x_1+x_2\right)^2-2x_1.x_2}-\frac{1}{x_1.x_2}=\frac{15}{m}\)
\(\Leftrightarrow\frac{2}{\left(-2m+4\right)^2-2\left(m^2-2m+4\right)}-\frac{1}{m^2-2m+4}=\frac{15}{m}\)
\(\Leftrightarrow\frac{1}{m^2-6m+4}-\frac{1}{m^2-2m+4}=\frac{15}{m}\)
\(\Leftrightarrow15m^4-120m^3+296m^2-480m+240=0\)
Với m < 0 thì VP > 0
Vậy không tồn tại m để thỏa bài toán.
1. Từ đề bài suy ra (x^2 -7x+6)=0 hoặc x-5=0
Nếu x-5=0 suy ra x=5
Nếu x^2-7x+6=0 suy ra x^2-6x-(x-6)=0
Suy ra x(x-6)-(x-6)=0 suy ra (x-1)(x-6)=0
Suy ra x=1 hoặc x=6.
bài 1 ; \(\left(x^2-7x+6\right)\sqrt{x-5}=0\)
\(< =>\orbr{\begin{cases}x^2-7x+6=0\left(+\right)\\\sqrt{x-5}=0\left(++\right)\end{cases}}\)
\(\left(+\right)\)ta dễ dàng nhận thấy \(1-7+6=0\)
thì phương trình sẽ có nghiệm là \(\orbr{\begin{cases}x=1\\x=\frac{c}{a}=6\end{cases}}\)
\(\left(++\right)< =>x-5=0< =>x=5\)
Vậy tập nghiệm của phương trình trên là \(\left\{1;5;6\right\}\)
Xét
\(\Delta=\left(2m+1\right)^2-4\left(m^2+m-6\right)=4m^2+4m+1-4m^2-4m+24=25>0\)
Vậy phương trình luôn có nghiệp với \(\forall m\)
Theo Viete ta có ngay \(x_1+x_2=2m+1;x_1x_2=m^2+m-6\)
Ta có biến đổi sau:
\(x_1^3+x_2^3=\left(x_1+x_2\right)^3-3x_1x_2=\left(2m+1\right)^2-3\left(m^2+m-6\right)\)
\(=4m^2+4m+1-3m^2-3m+18\)
\(=m^2-m+19=\left(m-\frac{1}{2}\right)^2+18,75>0\)
Vậy \(\left|x_1^3+x_2^3\right|=\left|m^2-m+19\right|=m^2-m+19\)
Khi đó ta có được \(m^2-m+19=50\Leftrightarrow m^2-m-31=0\)
Đến đây dễ rồi nè :)
\(x^2+3x+m-3=0\)
Ta có \(\Delta=b^2-4ac\)
\(=3^2-4.1.\left(m-3\right)\)
\(=9-4m+12\)
\(=21-4m\)
Đẻ pt có 2 nghiệm \(x_1;x_2\)\(\Leftrightarrow\Delta\ge0\Leftrightarrow21-4m\ge0\)
\(\Leftrightarrow x\le\frac{21}{4}\)
Áp dụng vi-ét ta có
\(\hept{\begin{cases}x_1+x_2=-3\\x_1.x_2=m-3\end{cases}}\)
Ta có \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=5\Leftrightarrow\frac{x_1^2+x_2^2}{x_1.x_2}=5\)
\(\Leftrightarrow x_1^2+x_2^2=5x_1x_2\)
\(\Leftrightarrow x_1^2+x_2^2-5x_1.x_2=0\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-5x_1x_2=0\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-7x_1x_2=0\)
\(\Leftrightarrow\left(-3\right)^2-7\left(m-3\right)=0\)
\(\Leftrightarrow9-7m+21=0\)
\(\Leftrightarrow30-7m=0\)
\(\Leftrightarrow7m=30\)
\(\Leftrightarrow m=\frac{30}{7}\) (TM)
Vậy \(m=\frac{30}{7}\) thì thỏa mãn bài toán
Áp dụng hệ thức vi-ét, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-2\right)\\x_1.x_2=-2m-5\end{matrix}\right.\)
Ta có:
\(x^2_1+x^2_2=18\)
\(\left(x_1+x_2\right)^2-2x_1.x_2=18\)
\(\left(2m-2\right)^2-2.\left(-2m-5\right)=18\)
\(4m^2-8m+4+4m+10-18=0\)
\(4m^2-4m+1=5\)
\(\left(2m-1\right)^2=5\)
\(\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{\sqrt{5}+1}{2}\\m=\dfrac{1-\sqrt{5}}{2}\end{matrix}\right.\)