Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B
Điều kiện để đồ thị có tiệm cận: m ≠ - 3
Tâm đối xứng I(1;-m) là giao điểm của hai đường tiệm cận.
Khi đó, I ∈ d ⇔ m = - 3 (loại). Vậy không tồn tại m thỏa mãn.
Đáp án B
Tâm đối xứng của đồ thị (C) là giao điểm hai đường tiệm cận. (C) có tiệm cận đứng là x=-1, tiệm cận ngang là y=2 => I(-1;2)
Ta có: y ' = 1 x + 1 2 ⇒ PTTT tại điểm M a ; b là y = 1 a + 1 2 x − a + 2 a + 1 a + 1 . Từ đây ta xác định được giao điểm của PTTT tại M a ; b và hai tiệm cận x = − 1 , y = 2 là A − 1 ; 2 a a + 1 , B 2 a + 1 ; 2 .
Độ dài các cạnh của Δ I A B như sau
I A = 2 a a + 1 − 2 = 2 a + 1 I B = 2 a + 1 + 1 = 2 a + 1 A B = 2 1 a + 1 2 + a + 1 2 ⇒ S I A B = 1 2 I A . I B = 2 ;
P = I A + I B + A B 2 = 1 a + 1 + a + 1 + 1 a + 1 2 + a + 1 2
Áp dụng bất đẳng thức Cosi ta có p ≥ 2 + 2 đạt được ⇔ a + 1 = 1 ⇔ a = 0 ⇒ b = 1 a = − 2 ⇒ b = 3 ⇒ a + b = 1
Đáp án B
Sai lầm thường gặp: Tập xác định D = ℝ \ 3 .
Đạo hàm y ' = − 2 x − 3 2 ,0, ∀ x ∈ D ⇒ Hàm số nghịch biến trên ℝ \ 3 , hoặc làm số nghịch biến trên − ∞ ; 3 ∪ 3 ; + ∞ . Hàm số không có cực trị.
Tiệm cận đứng: x=3; tiệm cận ngang: y=1. Đồ thị hàm số nhận giao điểm I 3 ; 1 của hai đường tiệm cận làm tâm đối xứng.
Từ đó nhiều học sinh kết luận các mệnh đề 1 , 3 , 4 đúng và chọn ngay A.
Tuy nhiên đây là phương án sai.
Phân tích sai lầm:
Mệnh đề (1) sai, sửa lại: hàm số nghịch biến trên mỗi khoảng − ∞ ; 3 và 3 ; + ∞ . Học sinh cần nhớ rằng, ta chỉ học định nghĩa hàm số đồng biến (nghịch biến) trên khoảng, đoạn, nửa khoảng; chứ không có trên những khoảng hợp nhau.
Mệnh đề (2) sai. Đồ thị hàm số có một tiệm cận đứng là x=3, một tiệm cận ngang là y=1.
Mệnh đề 3 , 4 đúng.
Đáp án là D
Tiệm cận đứng của đồ thị là x= -1.
Tiệm cận ngang của đồ thị là y = 4.
=> Tâm đối xứng của đồ thị hàm số
y = 1 + 4 x 1 + x là I(-1;4).
Nhận xét: đồ thị hàm số y = a x + b c x + d có tâm đối xứng là giao điểm hai đường tiệm cận đứng và tiệm cận ngang.
Đáp án B
Điểm M ∈ C ⇒ M a ; 2 a + 1 a + 1 ⇒ y ' a = 1 a + 1 2
và y a = 2 a + 1 a + 1 .
Suy ra phương trình tiếp tuyến của ( C) tại M là
y = 2 a + 1 a + 1 = 1 a + 1 2 x − a ⇔ y = x a + 1 2 + 2 a 2 + 2 a + 1 a + 1 2 d .
Đường thẳng ( d ) cắt tiệm cận đứng tại
A − 1 ; 2 a a + 1 ⇒ I A = 2 a + 1 .
Đường thẳng ( d ) cắt tiệm cận ngang tại
B 2 a + 1 ; 2 ⇒ I B = 2 a + 1 .
Suy ra I A . I B = 4 và tam giác IAB vuông tại I
⇒ S Δ I A B = 1 2 . I A . I B = 2
Mà S Δ I A B = I A + I B + I C 2 x r ⇒ r m ax
khi và chỉ khi I A + I B + I C min
Ta có
I A + I B + I C = I A + I B + I A 2 + I B 2 ≥ 2 I A . I B + 2 I A . I B = 4 + 4 2 .
Dấu “=” xảy ra
⇔ 2 a + 1 = 2 a + 1 ⇔ a + 1 2 = 1 ⇔ a = 0 ⇒ b = 1 a = − 2 ⇒ b = 3 ⇒ a + b = 1.
Chọn B.
Tâm đối xứng của đồ thị hàm số này là giao điểm của 2 đường tiệm cận 1 2 ; 1 2
Đáp án C
Phương pháp: Tâm đối xứng của hàm đa thức bậc ba chính là điểm uốn. Tâm đối xứng của hàm phân thức là giao điểm của các đường tiệm cận.
Cách giải: Đối với hàm số y = 14 x − 1 x + 2 ta thấy T C N : y = 14, T C Đ : x = − 2.
Suy ra tâm đối xứng của đồ thị hàm số (H) là I − 2 ; 14 và I cũng là tâm đối xứng của đồ thị hàm số (C).
Đối với đồ thị hàm số (C) ta có: y ' = 3 x 2 + 2 m + 3 x
⇒ y ' ' = 6 x + 2 m + 3 = 0 ⇔ x = − m + 3 3
Hàm đa thức bậc ba có tâm đối xứng trùng với điểm uốn nên ta có:
− m + 3 3 = − 2 ⇔ m + 3 = 6 ⇔ m = 3