Tìm m để tâm đối xứng của đồ thị hàm số C : y...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2017

Đáp án C

Phương pháp: Tâm đối xứng của hàm đa thức bậc ba chính là điểm uốn. Tâm đối xứng của hàm phân thức là giao điểm của các đường tiệm cận.

Cách giải: Đối với hàm số y = 14 x − 1 x + 2  ta thấy   T C N : y = 14,   T C Đ :   x = − 2.

Suy ra tâm đối xứng của đồ thị hàm số (H) là I − 2 ; 14 và I cũng là tâm đối xứng của đồ thị hàm số (C).

Đối với đồ thị hàm số (C) ta có: y ' = 3 x 2 + 2 m + 3 x

⇒ y ' ' = 6 x + 2 m + 3 = 0 ⇔ x = − m + 3 3

Hàm đa thức bậc ba có tâm đối xứng trùng với điểm uốn nên ta có:

− m + 3 3 = − 2 ⇔ m + 3 = 6 ⇔ m = 3

8 tháng 4 2019

Chọn B

Điều kiện để đồ thị có tiệm cận: m ≠ - 3  

Tâm đối xứng I(1;-m) là giao điểm của hai đường tiệm cận.

Khi đó, I ∈ d ⇔ m = - 3  (loại). Vậy không tồn tại m thỏa mãn.

3 tháng 11 2018




19 tháng 11 2019

Đáp án B

Tâm đối xứng của đồ thị (C) là giao điểm hai đường tiệm cận. (C) có tiệm cận đứng là x=-1, tiệm cận ngang là y=2 => I(-1;2) 

Ta có: y ' = 1 x + 1 2 ⇒  PTTT tại điểm M a ; b  là y = 1 a + 1 2 x − a + 2 a + 1 a + 1 . Từ đây ta xác định được giao điểm của PTTT tại M a ; b  và hai tiệm cận x = − 1 , y = 2  là A − 1 ; 2 a a + 1 , B 2 a + 1 ; 2 .

Độ dài các cạnh của Δ I A B  như sau

  I A = 2 a a + 1 − 2 = 2 a + 1 I B = 2 a + 1 + 1 = 2 a + 1 A B = 2 1 a + 1 2 + a + 1 2 ⇒ S I A B = 1 2 I A . I B = 2 ;

P = I A + I B + A B 2 = 1 a + 1 + a + 1 + 1 a + 1 2 + a + 1 2

Áp dụng bất đẳng thức Cosi ta có p ≥ 2 + 2  đạt được ⇔ a + 1 = 1 ⇔ a = 0 ⇒ b = 1 a = − 2 ⇒ b = 3 ⇒ a + b = 1

26 tháng 1 2016

+TXĐ: X\(\in\)R

+y'=\(3x^2-6x\Rightarrow y'=0\Leftrightarrow\int_{x=2;y=0}^{x=0;y=4}\)

+y''=6(x-1)=> y' = 0 khi x = 1;y=2

+

x       -\(\infty\)                   0                      1                        2                        +\(\infty\)
y'                 +            0           -                           -        0       +
y

 

26 tháng 1 2016

2.  y' = 3x2 - 6x + m <0 khi x thuộc ( -1; 3)  => m/3 =-3 =>  m =-9

24 tháng 8 2018

Đáp án B

Sai lầm thường gặp: Tập xác định D = ℝ \ 3 .

Đạo hàm y ' = − 2 x − 3 2 ,0, ∀ x ∈ D ⇒  Hàm số nghịch biến trên ℝ \ 3 , hoặc làm số nghịch biến trên − ∞ ; 3 ∪ 3 ; + ∞ . Hàm số không có cực trị.

Tiệm cận đứng: x=3; tiệm cận ngang:  y=1. Đồ thị hàm số nhận giao điểm   I 3 ; 1  của hai đường tiệm cận làm tâm đối xứng.

Từ đó nhiều học sinh kết luận các mệnh đề 1 , 3 , 4  đúng và chọn ngay A.

Tuy nhiên đây là phương án sai.

Phân tích sai lầm:

Mệnh đề (1) sai, sửa lại: hàm số nghịch biến trên mỗi khoảng − ∞ ; 3  và 3 ; + ∞ . Học sinh cần nhớ rằng, ta chỉ học định nghĩa hàm số đồng biến (nghịch biến) trên khoảng, đoạn, nửa khoảng; chứ không có trên những khoảng hợp nhau.

Mệnh đề (2) sai. Đồ thị hàm số có một tiệm cận đứng là x=3, một tiệm cận ngang là y=1.

Mệnh đề 3 , 4  đúng.

1 tháng 3 2017

Đáp án là D           

Tiệm cận đứng của đồ thị là x= -1.

Tiệm cận ngang của đồ thị là y = 4.

=> Tâm đối xứng của đồ thị hàm số

y = 1 + 4 x 1 + x  là I(-1;4).

 Nhận xét: đồ thị hàm số y = a x + b c x + d  có tâm đối xứng là giao điểm hai đường tiệm cận đứng và tiệm cận ngang.

20 tháng 7 2019

Đáp án A

11 tháng 11 2019

Đáp án B

Điểm M ∈ C ⇒ M a ; 2 a + 1 a + 1 ⇒ y ' a = 1 a + 1 2

và  y a = 2 a + 1 a + 1 .

Suy ra phương trình tiếp tuyến của ( C) tại M là

y = 2 a + 1 a + 1 = 1 a + 1 2 x − a ⇔ y = x a + 1 2 + 2 a 2 + 2 a + 1 a + 1 2    d .

Đường thẳng ( d ) cắt tiệm cận đứng tại

A − 1 ; 2 a a + 1 ⇒ I A = 2 a + 1 .

Đường thẳng ( d ) cắt tiệm cận ngang tại

B 2 a + 1 ; 2 ⇒ I B = 2 a + 1 .

Suy ra I A . I B = 4  và tam giác IAB vuông tại I

⇒ S Δ I A B = 1 2 . I A . I B = 2

Mà  S Δ I A B = I A + I B + I C 2   x   r ⇒ r m ax

khi và chỉ khi  I A + I B + I C min

Ta có

I A + I B + I C = I A + I B + I A 2 + I B 2 ≥ 2 I A . I B + 2 I A . I B = 4 + 4 2 .

Dấu “=” xảy ra

⇔ 2 a + 1 = 2 a + 1 ⇔ a + 1 2 = 1 ⇔ a = 0 ⇒ b = 1 a = − 2 ⇒ b = 3 ⇒ a + b = 1.

13 tháng 2 2016

khó

13 tháng 2 2016

thế ms hỏi