Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(x^2-2\left(m+1\right)x+4m-m^2=0\)
Ta có : (a = 1 ; b = 2(m+1) ; b' = m + 1 ; c = 4m-m2 )
\(\Delta'=b'^2-ac\)
= \(\left(m+1\right)^2-1.\left(4m-m^2\right)\)
= m2 + 2m + 1 -4m +m2
= 2m2 -2m + 1
= 2 ( m-1)2 > 0 (phuong trinh luon co 2 nghien pb \(\forall m\)
a) có \(\Delta'=\left[-\left(m+1\right)\right]^2-4m+m^2\)
\(=m^2+2m+1-4m+m^2\)
\(=2m^2-2m+1\)
\(=2\left(m^2-2.\frac{1}{2}m+\frac{1}{4}-\frac{1}{4}+1\right)\)
\(=2\left(m-\frac{1}{2}\right)^2+\frac{1}{2}>0\forall m\)
\(\Rightarrow pt\) trên luôn có 2 nghiệm pb \(\forall m\)
b) ta có vi - ét \(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1.x_2=4m-m^2\end{cases}}\)
theo bài ra \(A=\left|x_1-x_2\right|\)
\(\Leftrightarrow A^2=\left(x_1-x_2\right)^2\)
\(\Leftrightarrow A^2=\left(x_1+x_2\right)^2-4x_1x_2\)
\(\Leftrightarrow A^2=4m^2+8m+4+4m^2-16m\)
\(\Leftrightarrow A^2=8m^2-8m+4\)
\(\Leftrightarrow A^2=8\left(m^2-m+\frac{1}{2}\right)\)
\(\Leftrightarrow A^2=8\left(m-\frac{1}{2}\right)^2+2\ge2\)
dấu "=" xảy ra \(\Leftrightarrow m-\frac{1}{2}=0\Leftrightarrow m=\frac{1}{2}\)
vậy MIN A^2 = \(2\Leftrightarrow m=\frac{1}{2}\)
xét pt \(x^2-2x+m-1=0\) \(\left(1\right)\)
từ (1) ta có \(\Delta'=\left(-1\right)^2-m+1\)
\(\Delta'=1-m+1\)
\(\Delta'=2-m\)
để pt (1) co 2 nghiệm phân biệt \(x_1,x_2\)thì \(\Delta'>0\Leftrightarrow2-m>0\)
\(\Leftrightarrow m< 2\)
theo định lí vi - ét \(\hept{\begin{cases}x_1+x_2=2\left(1\right)\\x_1.x_2=m-1\left(2\right)\end{cases}}\)
theo câu a) \(x_1=2x_2\Leftrightarrow x_1-2x_2=0\) \(\left(3\right)\)
từ \(\left(1\right)\) và \(\left(3\right)\) ta có hpt
\(\hept{\begin{cases}x_1+x_2=2\\x_1-2x_2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}3x_2=2\\x_1+x_2=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x_2=\frac{2}{3}\\x_1=\frac{4}{3}\end{cases}}\left(4\right)\)
thay \(\left(3\right)\) và (2) ta có \(x_1.x_2=m-1\)
\(\Leftrightarrow m-1=\frac{4}{3}.\frac{2}{3}\)
\(\Leftrightarrow m-1=\frac{8}{9}\)
\(\Leftrightarrow m=\frac{17}{9}\) ( TM \(m< 2\) )
vậy \(m=\frac{17}{9}\) là giá trị cần tìm
a) theo bài ra \(\left|x_1-x_2\right|=4\)
\(\Leftrightarrow\left(\left|x_1-x_2\right|\right)^2=16\)
\(\Leftrightarrow\left(x_1-x_2\right)^2=16\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4\left(x_1.x_2\right)-16=0\)
\(\Leftrightarrow2^2-4.\left(m-1\right)-16=0\)
\(\Leftrightarrow-12-4\left(m-1\right)=0\)
\(\Leftrightarrow-4\left(m-1\right)=12\)
\(\Leftrightarrow m-1=-3\)
\(\Leftrightarrow m=-2\) ( TM \(m< 2\))
vậy....
b) \(\left|x_1\right|+\left|x_2\right|=4\)
\(\Leftrightarrow\left(\left|x_1\right|+\left|x_2\right|\right)^2=16\)
\(\Leftrightarrow x^2_1+2\left|x_1\right|.\left|x_2\right|+x^2_2=16\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2+2\left|x_1.x_2\right|=16\)
\(\Leftrightarrow2^2-2\left(m-1\right)+2\left|m-1\right|=16\) \(\left(#\right)\)
+) Nếu \(m-1\ge0\Leftrightarrow m\ge1\) thì pt \(\left(#\right)\)
\(\Leftrightarrow4-2m+2+2m-2=16\)
\(\Leftrightarrow0m=16-4\Leftrightarrow0m=12\) ( pt này vô nghiệm )
+) nếu \(m-1< 0\Leftrightarrow m< 1\) thì pt \(\left(#\right)\)
\(\Leftrightarrow4-2m+2-2m+2=16\)
\(\Leftrightarrow-4m=16-8\)
\(\Leftrightarrow-4m=8\)
\(\Leftrightarrow m=-2\) ( TM \(m< 1\) )
vậy \(m=-2\) là giá trị cần tìm
a) Ta có : \(\Delta'=\left(m+1\right)^2-\left(m^2+4m+3\right)=-2m-2\)
Để pt có 2 nghiệm phân biêt \(\Leftrightarrow\Delta'>0\Leftrightarrow m< -1\)
b) Theo hệ thức Viet \(\hept{\begin{cases}S=x_1+x_2=-2\left(m+1\right)\\P=x_1x_2=m^2+4m+3\end{cases}}\)
\(\Rightarrow A=m^2+4m+3+4\left(m+1\right)=m^2+4m+3+4m+4=m^2+8m+7\)
c) Ta có : \(A=m^2+8m+7=m^2+8m+16-9=\left(m+4\right)^2-9\ge-9\)
Dấu " = " xảy ra khi <=> m = -4 ( tm m < -1 )
Vậy minA = -9 tại m = -4
có \(\Delta'=\left[-\left(m-1\right)\right]^2-m^2+m+5\)
\(\Delta'=m^2-2m+1-m^2+m+5\)
\(\Delta'=-m+6\)
để pt (1) có 2 nghiệm \(x_1;x_2\) \(\Leftrightarrow-m+6>0\)
\(\Leftrightarrow m< 6\)
theo định lí \(Vi-et\) \(\hept{\begin{cases}x_1+x_2=2m-2\\x_1.x_2=m^2-m-5\end{cases}}\)
theo bài ra \(\frac{x_1}{x_2}+\frac{x_2}{x_1}+\frac{10}{3}=0\)
\(\Leftrightarrow\frac{x_1^2+x_2^2}{x_1.x_2}+\frac{10}{3}=0\) ( \(x_1.x_2\ne0\Leftrightarrow m^2-m-5\ne0\))
\(\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1.x_2}{x_1.x_2}=\frac{-10}{3}\)
\(\Leftrightarrow\frac{\left(2m-2\right)^2-2.\left(m^2-m-5\right)}{m^2-m-5}=-\frac{10}{3}\)
\(\Leftrightarrow\frac{4m^2-8m+4-2m^2+2m+10}{m^2-m-5}=\frac{-10}{3}\)
\(\Leftrightarrow\left(2m^2-6m+14\right).3=-10.\left(m^2-m-5\right)\)
\(\Leftrightarrow6.\left(m^2-3m+7\right)=-10.\left(m^2-m-5\right)\)
\(\Leftrightarrow-3m^2+9m-21=5m^2-5m-25\)
\(\Leftrightarrow-3m^2+9m-21-5m^2+5m+25=0\)
\(\Leftrightarrow-8m^2+14m+4=0\)
\(\Leftrightarrow4m^2-7m-2=0\) \(\left(2\right)\)
từ PT (2) có \(\Delta=\left(-7\right)^2-4.4.\left(-2\right)=49+32=81>0\Rightarrow\sqrt{\Delta}=9\)
vì \(\Delta>0\) nên PT có 2 nghiệm phân biệt
\(m_1=\frac{7-9}{8}=\frac{-1}{4}\) ( TM ĐK
\(m_2=\frac{7+9}{8}=2\) \(m< 6\)và \(m^2-m-5\ne0\))
Bài này bạn áp dụng vi-ét là ra ngay nha !
Chúc bạn học tốt !
Ta có :
\(\Delta=b^2-4.a.c\)
\(\Delta=[-\left(5-m\right)]^2-4.1.\left(4m+4\right)\)
\(\Delta=25-10m+m^2-4.\left(4m+4\right)\)
\(\Delta=25-10m+m^2-16m-16\)
\(\Delta=m^2-26m+9\)
\(\Delta=\left(m-13\right)^2-160\) > 0 \(\forall m\) \(\in R\)
Theo ht vi - ét , ta có :
\(x_1+x_2=\) \(5+m\)
\(x_1.x_2=4m+4\)
\(\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{7}{12}\)
⇔ \(x_1+x_2=\dfrac{7}{12}\)
⇔ \(5+m=\dfrac{7}{12}\)
⇔ \(m=-\dfrac{53}{12}\)
Vậy m = \(-\dfrac{53}{12}\)
( không chắc đáp án đâu nhé )
Đề sai nhé , sửa \(\left(x_1-2\right)^2\)thành \(\left(x_1-1\right)^2\)nhé
Để PT \(x^2+5x+m-2=0\)có 2 nghiệm phân biệt \(x_1;x_2\)ta phải có :
\(\Delta=5^2-4\left(m-2\right)=33-4m>0\Leftrightarrow m< \frac{33}{4}\)(*)
Theo định lí Viet , ta có : \(\hept{\begin{cases}x_1+x_2=-5\\x_1x_2=m-2\end{cases}}\)
Để các nghiệm \(x_1;x_2\)thỏa mãn hệ thức đã cho thì các nghiệm đó phải khác 1 , khi đó đk là :
\(1^2+5.1+m-2\ne0\Leftrightarrow m\ne-4\)(**)
Ta có : \(\frac{1}{\left(x_1-1\right)^2}+\frac{1}{\left(x_2-1\right)^2}=1\)
\(\Leftrightarrow\left(x_2-1\right)^2+\left(x_1-1\right)^2=\left(x_1-1\right)^2\left(x_2-1\right)^2\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2\left(x_1+x_2\right)-2x_1x_2+2=\left[x_1x_2-\left(x_1+x_2\right)+1\right]^2\)
\(\Leftrightarrow37-2\left(m-2\right)=\left(m-2+5+1\right)^2\)
\(\Leftrightarrow41-2m=\left(m+4\right)^2\)
\(\Leftrightarrow m^2+10m-25=0\)
\(\Leftrightarrow\orbr{\begin{cases}m=-5+5\sqrt{2}\\m=-5-5\sqrt{2}\end{cases}}\)( tm * và ** )
Vậy với \(m=-5\pm5\sqrt{2}\)thì tm đề bài