K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2023

Để phương trình có nghiệm \(\Delta'\ge0\)

 \(\Rightarrow\left(\dfrac{10}{2}\right)^2-1.\left(2m+7\right)\ge0\\ 25-2m-7\ge0\\ \Leftrightarrow18-2m\ge0\\ \Leftrightarrow18\ge2m\\ \Leftrightarrow m\le9\)

Vậy ...

NV
27 tháng 3 2022

a. Phương trình có 2 nghiệm phân biệt khi:

\(\Delta=\left(2m-1\right)^2-4\left(m^2-1\right)=5-4m>0\)

\(\Rightarrow m< \dfrac{5}{4}\)

b. Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m-1\\x_1x_2=m^2-1\end{matrix}\right.\)

\(\left(x_1-x_2\right)^2=x_1-3x_2\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=x_1-3x_2\)

\(\Leftrightarrow\left(2m-1\right)^2-4\left(m^2-1\right)=x_1-3x_2\)

\(\Leftrightarrow x_1-3x_2=5-4m\)

Kết hợp hệ thức Viet ta được: \(\left\{{}\begin{matrix}x_1+x_2=2m-1\\x_1-3x_2=5-4m\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=2m-1\\4x_2=6m-6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{m+1}{2}\\x_2=\dfrac{3m-3}{2}\end{matrix}\right.\)

Thế vào \(x_1x_2=m^2-1\)

\(\Rightarrow\left(\dfrac{m+1}{2}\right)\left(\dfrac{3m-3}{2}\right)=m^2-1\)

\(\Leftrightarrow m^2-1=0\Rightarrow m=\pm1\) (thỏa mãn)

AH
Akai Haruma
Giáo viên
23 tháng 5 2021

Không tồn tại giá trị nào của $m$ thỏa mãn, vì $x_1^2+x_2^2+2019\geq 2019>0$ với mọi $m\in\mathbb{R}$

Δ=(2m+5)^2-4(-2m-6)

=4m^2+20m+25+8m+24

=4m^2+28m+49

=(2m+7)^2>=0

Để phương trình có hai nghiệm phân biệt thì 2m+7<>0

=>m<>-7/2

|x1|+|x2|=7

=>x1^2+x2^2+2|x1x2|=49

=>(x1+x2)^2-2x1x2+2|x1x2|=49

=>(2m+5)^2-2(-2m-6)+2|2m+6|=49

=>4m^2+20m+25+4m+12+2|2m+6|=49

=>4m^2+24m-12+4|m+3|=0

TH1: m>=-3

=>4m^2+24m-12+4m+12=0

=>4m^2+28m=0

=>m=0(nhận) hoặc m=-7(loại)

TH2: m<-3

=>4m^2+24m-12-4m-12=0

=>4m^2+20m-24=0

=>m^2+5m-6=0

=>m=-6(nhận) hoặc m=-1(loại)