K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 11 2018

\(\left\{{}\begin{matrix}m\ne0\\\Delta'>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ne0\\m< 1\end{matrix}\right.\)

Khi đó \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2m+2}{m}\\x_1x_2=\dfrac{m+3}{m}\end{matrix}\right.\)

\(x_1^3+x_2^3-2\left(x_1+x_2\right)=0\Leftrightarrow\left(x_1+x_2\right)\left(\left(x_1+x_2\right)^2-3x_1x_2\right)-2\left(x_1+x_2\right)=0\)

\(\Leftrightarrow\left(x_1+x_2\right)\left(\left(x_1+x_2\right)^2-3x_1x_2-2\right)=0\)

TH1: \(x_1+x_2=0\Leftrightarrow\dfrac{2\left(m+1\right)}{m}=0\Rightarrow m=-1\)

TH2: \(\left(x_1+x_2\right)^2-3x_1x_2-2=0\Leftrightarrow\left(\dfrac{2m+2}{m}\right)^2-\dfrac{3m+9}{m}-2=0\)

\(\Leftrightarrow m^2+m-4=0\Rightarrow\left[{}\begin{matrix}m=\dfrac{-1-\sqrt{17}}{2}\\m=\dfrac{-1+\sqrt{17}}{2}\left(l\right)\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}m=-1\\m=\dfrac{-1-\sqrt{17}}{2}\end{matrix}\right.\)

29 tháng 11 2019
https://i.imgur.com/DsuSfIq.jpg
29 tháng 11 2019
https://i.imgur.com/LOVvDRi.jpg
NV
22 tháng 2 2020

Để BPT nghiệm đúng với mọi x thì:

a/ \(\left\{{}\begin{matrix}2m^2-3m-2< 0\\\Delta'=\left(m-2\right)^2+2m^2-3m-2\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2m^2-3m-2< 0\\3m^2-7m+2\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-\frac{1}{2}< m< 2\\\frac{1}{3}\le m\le2\end{matrix}\right.\)

\(\Rightarrow\frac{1}{3}\le m< 2\)

b/ \(\left(m+4\right)x^2-2mx+2m-6< 0\)

\(\left\{{}\begin{matrix}m+4< 0\\\Delta'=m^2-\left(m+4\right)\left(2m-6\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< -4\\-m^2-2m+24< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< -4\\\left[{}\begin{matrix}m< -6\\m>4\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m< -6\)

NV
5 tháng 11 2019

\(x\left(x^2-3x-m\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-3x-m=0\left(1\right)\end{matrix}\right.\)

Để pt đã cho có 3 nghiệm pb trong đó có 2 nghiệm dương \(\Leftrightarrow\) (1) có 2 nghiệm dương phân biệt

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\\x_1+x_2>0\\x_1x_2>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4m+9>0\\3>0\\-m>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>-\frac{9}{4}\\m< 0\end{matrix}\right.\)

\(\Rightarrow-\frac{9}{4}< m< 0\)