Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, Ta có : \(\dfrac{x+2}{x-m}=\dfrac{x+1}{x-1}\Leftrightarrow\left(x+2\right)\left(x-1\right)=\left(x+1\right)\left(x-m\right)\)
\(\Leftrightarrow x^2-x+2x-2=x^2-xm+x-m\)
\(\Leftrightarrow x^2-x^2+x-x-2+xm+m=0\)
\(\Leftrightarrow x\left(m+1\right)-2=0\)
Nếu \(m+1\ne0\Rightarrow\)PT có nghiệm duy nhất là : x = \(\dfrac{2}{m+1}\)
Vậy nếu m # -1 thì Pt có nghiệm duy nhất
3 ,
\(\dfrac{x+m}{x+1}+\dfrac{x-2}{x}=2\)
\(\Leftrightarrow\dfrac{x^2+mx}{x\left(x+1\right)}+\dfrac{\left(x-2\right)\left(x+1\right)}{x\left(x+1\right)}=2\)
\(\Leftrightarrow\dfrac{x^2+mx+x^2+x-2x-2}{x\left(x+1\right)}=2\)
Mik chỉ làm đến đây được thôi
P/S : Đăng từng bài 1 thôi :))
Câu 1: \(\dfrac{x+2}{x-m}=\dfrac{x+1}{x-1}\)
ĐKXĐ: \(x\ne m;x\ne1\)
\(\text{Ta có : }\dfrac{x+2}{x-m}=\dfrac{x+1}{x-1}\\ \Rightarrow\dfrac{\left(x+2\right)\left(x-1\right)}{\left(x-m\right)\left(x-1\right)}=\dfrac{\left(x+1\right)\left(x-m\right)}{\left(x-1\right)\left(\left(x-m\right)\right)}\\ \Rightarrow x^2+2x-x-2=x^2-mx+x-m\\ \Leftrightarrow x^2+x-2-x^2+mx-x+m=0\\ \Leftrightarrow m\left(x+1\right)=2\)
+) Với \(m\ne0\Leftrightarrow x+1=\dfrac{2}{m}\)
\(\Leftrightarrow x=\dfrac{2-m}{m}\)
\(\text{Khi đó : }\left\{{}\begin{matrix}\dfrac{2-m}{m}\ne1\\\dfrac{2-m}{m}\ne m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2-m}{m}-1\ne0\\\dfrac{2-m}{m}-m\ne0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\dfrac{2-m-m}{m}\ne0\\\dfrac{2-m-m^2}{m}\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2-2m\ne0\\2-2m+m-m^2\ne0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2\left(1-m\right)\ne0\\2\left(1-m\right)+m\left(1-m\right)\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}1-m\ne0\\\left(2+m\right)\left(1-m\right)\ne0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}1-m\ne0\\2+m\ne0\\1-m\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m\ne-2\end{matrix}\right.\)
Với \(m=0\Leftrightarrow0x=2\left(\text{Vô nghiệm}\right)\)
\(\Leftrightarrow S=\varnothing\)
Vậy để phương trình có 1 nghiệm duy nhất thì \(m\ne0;m\ne1;m\ne-2\)
câu 1:
a)x-1=5-x\(\Leftrightarrow\)x+x=5+1\(\Leftrightarrow\)2x=6\(\Leftrightarrow\)x=3
Vậy tập nghiệm của PT (a) là S={3}
b)3+x=2-x\(\Leftrightarrow\)x+x=2-3\(\Leftrightarrow\)2x=-1\(\Leftrightarrow\)x=-0,5
Vậy tập nghiệm của PT (b) là:S={-0,5}
câu 2:
a) 3x+7=2x-3\(\Leftrightarrow\)3x-2x=-3-7\(\Leftrightarrow\)x=-10
Vậy tập nghiệm của PT (a) là:S={-10}
b)4-(x-2)=(3-2x)\(\Leftrightarrow\)4-x+2=3-2x\(\Leftrightarrow\)-x+2x=-4+3-2\(\Leftrightarrow\)x=-3
Vậy tập nghiệm của PT (b) là:S={-3}
Câu 3:
a)\(\dfrac{5x-4}{2}=\dfrac{16x+1}{7}\Leftrightarrow\dfrac{7\left(5x-4\right)}{14}=\dfrac{2\left(16x+1\right)}{14}\)
\(\Leftrightarrow\)35x-28=32x+2\(\Leftrightarrow\)35x-32x=2+28\(\Leftrightarrow\)3x=30\(\Leftrightarrow\)x=10
Vậy tập nghiệm của PT (a) là :S={10}
b)\(\dfrac{12x+5}{3}=\dfrac{2x-7}{4}\Leftrightarrow\dfrac{4\left(12x+5\right)}{12}=\dfrac{3\left(2x-7\right)}{12}\)
\(\Leftrightarrow\)48x+20=6x-21\(\Leftrightarrow\)48x-6x=-20-21\(\Leftrightarrow\)42x=-41\(\Leftrightarrow\)x=\(-\dfrac{41}{42}\)
Vậy tập nghiệm của PT (b) là:S={\(-\dfrac{41}{42}\)}
(2x−m)/(x−2)+(x−1)/(x+2)=3
(2x−m)/(x−2) -1+(x−1)/(x+2)-2=0
{x≠±2)
<=>(4−m)(x+2)−3(x−2)=0
<=>(4−m−3)x+2(4−m)+6=0
<=>(1−m)x=2(m−7)
m=1 vô nghiệm
m khac 1 ⇔x=2(m−7)/(1−m)
nghiệm dương ⇔2(m−7)/(1−m)>0⇔1≤m≤7
⇔(m−7)/(1−m)≠1⇔m≠4
kết luận
[1≤m<4
4<m≤7
a) \(M=\left(\dfrac{1}{1-x}+\dfrac{2}{x+1}-\dfrac{5-x}{1-x^2}\right):\dfrac{1-2x}{x^2-1}\)
\(\Leftrightarrow M=\left(\dfrac{-1}{x-1}+\dfrac{2}{x+1}+\dfrac{5-x}{x^2-1}\right):\dfrac{1-2x}{x^2-1}\)
\(\Leftrightarrow M=\left(\dfrac{-1}{x-1}+\dfrac{2}{x+1}+\dfrac{5-x}{\left(x-1\right)\left(x+1\right)}\right):\dfrac{1-2x}{x^2-1}\)
\(\Leftrightarrow M=\left(\dfrac{-\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{5-x}{\left(x-1\right)\left(x+1\right)}\right):\dfrac{1-2x}{x^2-1}\)
\(\Leftrightarrow M=\dfrac{-\left(x+1\right)+2\left(x-1\right)+\left(5-x\right)}{\left(x-1\right)\left(x+1\right)}:\dfrac{1-2x}{x^2-1}\)
\(\Leftrightarrow M=\dfrac{-x-1+2x-2+5-x}{\left(x-1\right)\left(x+1\right)}:\dfrac{1-2x}{x^2-1}\)
\(\Leftrightarrow M=\dfrac{2}{\left(x-1\right)\left(x+1\right)}:\dfrac{1-2x}{x^2-1}\)
\(\Leftrightarrow M=\dfrac{2}{\left(x-1\right)\left(x+1\right)}.\dfrac{x^2-1}{1-2x}\)
\(\Leftrightarrow M=\dfrac{2\left(x^2-1\right)}{\left(x-1\right)\left(x+1\right)\left(1-2x\right)}\)
\(\Leftrightarrow M=\dfrac{2\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(1-2x\right)}\)
\(\Leftrightarrow M=\dfrac{2}{1-2x}\)
b) \(M=\dfrac{2}{1-2x}=\dfrac{-2}{3}\)
\(\Rightarrow2.3=\left(1-2x\right).\left(-2\right)\)
\(\Rightarrow6=-2+4x\)
\(\Rightarrow4x=6-\left(-2\right)\)
\(\Rightarrow4x=6+2\)
\(\Rightarrow4x=8\)
\(\Rightarrow x=8:4\)
\(\Rightarrow x=2\)
Vậy \(M=\dfrac{-2}{3}\) thì \(x=2\)
c) Để \(M=\dfrac{2}{1-2x}\in Z\) \(\Leftrightarrow2⋮1-2x\)
\(\Rightarrow1-2x\in U\left(2\right)=\left\{-1;1;-2;2\right\}\)
\(\Rightarrow\left\{{}\begin{matrix}1-2x=-1\Rightarrow x=1\\1-2x=1\Rightarrow x=0\\1-2x=-2\Rightarrow x=1,5\\1-2x=2\Rightarrow x=-0,5\end{matrix}\right.\)
Mà \(x\in Z\)
\(\Rightarrow x\in\left\{1;0\right\}\)
Vậy \(x=1\) hoặc \(x=0\) thì \(M\in Z\)
a) M = \(\left(\dfrac{1}{1-x}+\dfrac{2}{x+1}-\dfrac{5-x}{1-x^2}\right):\dfrac{1-2x}{x^2-1}\)
= \(\left(\dfrac{1}{1-x}+\dfrac{2}{1+x}-\dfrac{5-x}{\left(1-x\right)\left(1+x\right)}\right).\dfrac{x^2-1}{1-2x}\)
= \(\left(\dfrac{1+x}{\left(1-x\right)\left(1+x\right)}+\dfrac{2\left(1-x\right)}{\left(1-x\right)\left(1+x\right)}-\dfrac{5-x}{\left(1-x\right)\left(1+x\right)}\right).\dfrac{\left(x-1\right)\left(x+1\right)}{1-2x}\)
= \(\dfrac{1+x+2-2x-5+x}{\left(1-x\right)\left(1+x\right)}.\dfrac{\left(x-1\right)\left(x+1\right)}{1-2x}\)\(=\dfrac{-2}{\left(1-x\right)\left(1+x\right)}.\dfrac{\left(x-1\right)\left(x+1\right)}{1-2x}\)
= \(\dfrac{2}{\left(x-1\right)\left(x+1\right)}.\dfrac{\left(x-1\right)\left(x+1\right)}{1-2x}\)
=\(\dfrac{2}{1-2x}\)
b) M = \(\dfrac{-2}{3}\Leftrightarrow\dfrac{2}{1-2x}=\dfrac{-2}{3}\)
=> 2 . 3 = -2 (1 - 2x) (tích chéo)
=> 6 = -2 + 4x
=> 6 + 2 - 4x = 0
=> 8 - 4x = 0
=> 4x = 8
=> x = 2 (thỏa mãn đkxđ)
Vậy để M = \(\dfrac{-2}{3}\) thì x = 2
a) \(6\left(1,5-2x\right)=3\left(-15+2x\right)\)
\(\Rightarrow6.1,5-6.2x=3.\left(-15\right)+3.2x\)
\(\Rightarrow9-12x=-45+6x\)
\(\Rightarrow9-12x+45-6x=0\)
\(\Rightarrow54-18x=0\)
\(\Rightarrow18\left(3-x\right)=0\)
Để 18(3 - x) = 0
=> 3 - x = 0
=> x = 3
Vậy nghiệm của phương trình là 3
b) \(3-4x\left(25-2x\right)=8x^2+x-300\)
\(\Rightarrow3-100x+8x^2=8x^2+x-300\)
\(\Rightarrow3-100x+8x^2-8x^2-x+300=0\)
\(\Rightarrow303-101x=0\)
\(\Rightarrow101\left(3-x\right)=0\)
Để 101(3 - x) = 0
=> 3 - x = 0
=> x = 3
Vậy nghiệm của phương trình là 3
c) \(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=\dfrac{16}{x^2-1}\)
\(\Rightarrow\dfrac{\left(x+1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\dfrac{\left(x-1\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}=\dfrac{16}{x^2-1}\)
\(\Rightarrow\dfrac{\left(x+1\right)^2}{x^2-1}-\dfrac{\left(x-1\right)^2}{x^2-1}=\dfrac{16}{x^2-1}\)
\(\Rightarrow\dfrac{\left(x+1\right)^2-\left(x-1\right)^2}{x^2-1}=\dfrac{16}{x^2-1}\)
\(\Rightarrow\dfrac{\left(x+1+x-1\right)\left(x+1-x+1\right)}{x^2-1}=\dfrac{16}{x^2-1}\)
\(\Rightarrow\dfrac{2x.2}{x^2-1}-\dfrac{16}{x^2-1}=0\)
\(\Rightarrow\dfrac{4x-16}{x^2-1}=0\)
\(\Rightarrow4x-16=0\)
\(\Rightarrow4\left(x-4\right)=0\)
Để 4(x - 4) = 0
=> x - 4 = 0
=> x = 4
Vậy nghiệm của phương trình là 4
d) \(x^2-x-6=0\)
\(\Rightarrow x^2+2x-3x-6=0\)
\(\Rightarrow x\left(x+2\right)-3\left(x+2\right)=0\)
\(\Rightarrow\left(x+2\right)\left(x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)
Vậy nghiệm của phương trình là -2;3
@Mysterious Person @Aki Tsuki @Nhã Doanh @Phùng Khánh Linh giúp vs! cần gấp lắm!
Tớ không biết chắc đâu nhé ta có từ pt:
x2+x-2=x2-(m-1)x-m \(\Leftrightarrow\) m.x+m-2=0
Nếu m=0 thì pt vô nghiệm 0x=2
Nếu m khác 0 thì pt là pt bậc nhất có một nghiệm duy nhất là x= \(\dfrac{2-m}{m}\)