Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
Đặt \(cosx=t\Rightarrow0< t\le1\)
\(\Rightarrow t^2-2mt+4\left(m-1\right)=0\)
\(\Leftrightarrow t^2-4-2m\left(t-2\right)=0\)
\(\Leftrightarrow\left(t-2\right)\left(t+2-2m\right)=0\)
\(\Leftrightarrow t=2m-2\)
\(\Rightarrow0< 2m-2\le1\Rightarrow1< m\le\frac{3}{2}\)
b.
\(x\in\left(-\frac{\pi}{2};\frac{\pi}{2}\right)\Rightarrow\frac{x}{2}\in\left(-\frac{\pi}{4};\frac{\pi}{4}\right)\)
Đặt \(sin\frac{x}{2}=t\Rightarrow-\frac{\sqrt{2}}{2}< t< \frac{\sqrt{2}}{2}\)
\(\Rightarrow4t^2+2t+m-2=0\Leftrightarrow4t^2+2t-2=-m\)
Xét \(f\left(t\right)=4t^2+2t-2\) trên \(\left(-\frac{\sqrt{2}}{2};\frac{\sqrt{2}}{2}\right)\)
\(f\left(-\frac{\sqrt{2}}{2}\right)=-\sqrt{2}\) ; \(f\left(\frac{\sqrt{2}}{2}\right)=\sqrt{2}\) ; \(f\left(-\frac{1}{4}\right)=-\frac{9}{4}\)
\(\Rightarrow-\frac{9}{4}\le f\left(t\right)< \sqrt{2}\Rightarrow-\frac{9}{4}\le-m< \sqrt{2}\)
\(\Rightarrow-\sqrt{2}< m\le\frac{9}{4}\)
Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^2x\)
\(2tan^2x-tanx-m=1+tan^2x\)
\(\Leftrightarrow tan^2x-tanx-1=m\)
Đặt \(tanx=t\Rightarrow t\in\left[-1;1\right]\)
\(\Rightarrow t^2-t-1=m\)
Xét \(f\left(t\right)=t^2-t-1\) trên \(\left[-1;1\right]\) có \(-\frac{b}{2a}=\frac{1}{2}\in\left[-1;1\right]\)
\(f\left(-1\right)=1\) ; \(f\left(\frac{1}{2}\right)=-\frac{5}{4}\) ; \(f\left(1\right)=-1\)
\(\Rightarrow-\frac{5}{4}\le m\le1\Rightarrow m=\left\{-1;0;1\right\}\) có 3 giá trị nguyên của m
Câu 1:
\(cos7x-\sqrt{3}sin7x=-2\\ \Leftrightarrow cos\left(7x+\dfrac{\pi}{3}\right)=-1\\ \Leftrightarrow7x+\dfrac{\pi}{3}=-\pi+k2\pi\\ \Leftrightarrow x=-\dfrac{4\pi}{21}+k\dfrac{2\pi}{7}\)
Vì \(x\in[\dfrac{2\pi}{5};\dfrac{6\pi}{7}]\)
\(\Rightarrow\dfrac{2\pi}{5}\le x\le\dfrac{6\pi}{7}\\ \Leftrightarrow\dfrac{2\pi}{5}\le-\dfrac{4\pi}{21}+k\dfrac{2\pi}{7}\le\dfrac{6\pi}{7}\\ \Leftrightarrow\dfrac{31}{15}\le k\le\dfrac{11}{3}\)
Vì \(k\in Z\) nên \(k=3\)
Vậy \(x\) cần tìm là \(\dfrac{2\pi}{3}\)
Câu 2:
\(2sin^2x-sinxcosx-cos^2x=m\\ \Leftrightarrow2\dfrac{1-cos2x}{2}-\dfrac{1}{2}s\text{in2}x-\dfrac{1+cos2x}{2}=m\\ \Leftrightarrow3cos2x+s\text{in2}x=1-2m\)
Điều kiện để phương trình có nghiệm là:
\(3^2+1^2\ge\left(1-2m\right)^2\\ \Leftrightarrow4m^2-4m-9\le0\\ \Leftrightarrow\dfrac{1-\sqrt{10}}{2}\le m\le\dfrac{1+\sqrt{10}}{2}\)
Cho e hỏi là vì sao khúc cuối có dấu bằng mà trên đề k có dấu bằng ạ?
Vì mình lấy giá trị nguyên bạn
Chính xác là \(-\frac{1}{4}< k< \frac{2020-\frac{\pi}{2}}{2\pi}\)
\(\Rightarrow-0,25< k< 321,243\) (1)
Nhưng k nguyên nên chỉ cần lấy khoảng ở số nguyên gần nhất, tức là \(0\le k\le321\)
ngại viết quá hihi, mà hơi ngáo tí cái dạng này lm rồi mà cứ quên
bài trước mk bình luận bạn đọc chưa nhỉ
\(\Leftrightarrow\left(3m+5\right)cosx=\left(2m+3\right)cosx-m\)
\(\Leftrightarrow\left(m+2\right)cosx=-m\)
- Với \(m=-2\) pt vô nghiệm
- Với \(m\ne-2\Rightarrow cosx=-\frac{m}{m+2}\)
Do \(-1\le cosx\le1\) nên pt có nghiệm khi và chỉ khi: \(-1\le-\frac{m}{m+2}\le1\)
\(\Leftrightarrow\left\{{}\begin{matrix}1-\frac{m}{m+2}\ge0\\1+\frac{m}{m+2}\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\frac{2}{m+2}\ge0\\\frac{2m+2}{m+2}\ge0\end{matrix}\right.\)
\(\Leftrightarrow m\ge-1\)