Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có\(\frac{x-m}{x+3}+\frac{x-3}{x+m}=2\)
=> \(\frac{\left(x-m\right)\left(x+m\right)+\left(x-3\right)\left(x+3\right)}{\left(x+3\right)\left(x+m\right)}=2\)
=> \(\frac{x^2-m^2+x^2-9}{\left(x+3\right)\left(x+m\right)}=2\)
=> \(\frac{2x^2-m^2-9}{\left(x+3\right)\left(x+m\right)}=2\)
=> 2x2 -m2 - 9 = 2(x + 3)(x + m)
=> 2x2 - m2 - 9 = 2[x2 + (3 + m)x + 3m]
=> 2x2 -m2 - 9 = 2x2 + 2x(3 + m) + 6m
=> 2x2 - m2 - 9 - 2x2 - 2x(3 + m) - 6m = 0
=> -(m2 + 6m + 9) - 2x(m + 3) = 0
=> -(m + 3)2 - 2x(m + 3) = 0 \(\forall x\)
=> m + 3 = 0
=> m = -3
Vậy m = -3 thì phương trình có nghiệm
Ta có:\(\frac{x-m}{x+3}+\frac{x-3}{x+m}=2\)
\(\Leftrightarrow\frac{\left(x-m\right)\left(x+m\right)}{\left(x+3\right)\left(x+m\right)}+\frac{\left(x-3\right)\left(x+3\right)}{\left(x+m\right)\left(x+3\right)}=2\)
\(\Leftrightarrow\frac{x^2-m^2+x^2-9}{\left(x+3\right)\left(x+m\right)}=2\)
\(\Leftrightarrow\frac{2x^2-m^2-9}{\left(x+3\right)\left(x+m\right)}=2\)
\(\Leftrightarrow2x^2-m^2-9=2\left[\left(x+3\right)\left(x+m\right)\right]\)
\(\Leftrightarrow2x^2-m^2-9=2\left(x^2+mx+3x+3m\right)\)
\(\Leftrightarrow2x^2-m^2-9=2x^2+2mx+6x+6m\)
\(\Leftrightarrow2x^2-m^2-9-2x^2-2mx-6x-6m=0\)
\(\Leftrightarrow-m^2-9-2mx-6x-6m=0\)
\(\Leftrightarrow-\left(m^2+6m+9\right)-2x\left(m+3\right)=0\)
\(\Leftrightarrow-\left(m+3\right)^2-2x\left(x+3\right)=0\)
\(\Leftrightarrow m+3=0\)
\(\Leftrightarrow m=-3\)
Vậy...
2(m-1)x+3=2m-5
=>x(2m-2)=2m-5-3=2m-8
a: (1) là phương trình bậc nhất một ẩn thì m-1<>0
=>m<>1
b: Để (1) vô nghiệm thì m-1=0 và 2m-8<>0
=>m=1
c: Để (1) có nghiệm duy nhất thì m-1<>0
=>m<>1
d: Để (1) có vô số nghiệm thì 2m-2=0 và 2m-8=0
=>Ko có m thỏa mãn
e: 2x+5=3(x+2)-1
=>3x+6-1=2x+5
=>x=0
Khi x=0 thì (1) sẽ là 2m-8=0
=>m=4
a) \(x^2-7x+20=0\)
\(\Delta=b^2-4ac=\left(-7\right)^2-4.1.20=-31\)
\(\Rightarrow\)Phương trình vô nghiệm
Cho mình sửa chút thì tính được
\(x^2-9x+20\)
\(\Leftrightarrow x^2-4x-5x+20=0\)
\(\Leftrightarrow x\left(x-4\right)-5\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-5=0\Leftrightarrow x=5\\x-4=0\Leftrightarrow x=4\end{matrix}\right.\)
Gợi ý
Tách pt ra rồi sử dụng máy tính chọn EQN nhấn 1 rồi chọn hệ số