\(x^2-x-3m=0\)

b) \(m^2x^2...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2019

\(a)x^2-x-3m=0\)

Có: \(a=1;b=-1;c=-3m\)

\(\Delta=b^2-4ac\\ =\left(-1\right)^2-4.1.\left(-3m\right)\\ =1+12m\)

Phương trình có nghiệm khi \(\Delta\ge0\)

Hay \(1+12m\ge0\)

\(\Leftrightarrow12m\ge-1\)

\(\Leftrightarrow m\ge\frac{-1}{12}\)

NV
16 tháng 3 2019

Câu b biểu thức delta theo m sẽ có bậc 3, mà bất phương trình bậc 3 thì bậc phổ thông ko học, cho nên mình nghĩ là đề cho nhầm

B1: Cho pt \(x^2-2\left(m-1\right)x+2m-5=0\)(1)a. Tìm m để (1) có 2 nghiệm dương b. Gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm m để A=\(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2\)nhận GT nguyênB2: cho pt \(x^2-2\left(m-1\right)x+2m-3=0\)(1)a. Tìm m để (1) có 2 nghiệm trái dấub. Tìm m để nghiệm này bằng bình phương nghiệm kiaB3: cho pt \(x^2-\left(3m+1\right)x+2m^2+m-1=0\)(1)a. cmr pt (1) luôn có 2 nghiệm phân...
Đọc tiếp

B1: Cho pt \(x^2-2\left(m-1\right)x+2m-5=0\)(1)

a. Tìm m để (1) có 2 nghiệm dương 

b. Gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm m để A=\(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2\)nhận GT nguyên

B2: cho pt \(x^2-2\left(m-1\right)x+2m-3=0\)(1)

a. Tìm m để (1) có 2 nghiệm trái dấu

b. Tìm m để nghiệm này bằng bình phương nghiệm kia

B3: cho pt \(x^2-\left(3m+1\right)x+2m^2+m-1=0\)(1)

a. cmr pt (1) luôn có 2 nghiệm phân biệt \(\forall m\)

b. Tìm m để A=\(x_1^2+x_2^2-3x_1x_2\)đạt GTLN

B4: Cho pt \(x^2+\left(2m+3\right)x+3m+11=0\). Tìm m để pt có 2 nghiệm \(x_1,x_2\ne0\)thỏa mãn \(|\frac{1}{x_1}-\frac{1}{x_2}|=\frac{1}{2}\)

B5: cho 2 đường thẳng \(\left(d_1\right):y=\left(m-1\right)x-m^2-m\)và \(\left(d_2\right):y=\left(m-2\right)x-m^2-2m+1\)

a. Xđ tọa độ giao điểm của \(d_1\)và \(d_2\)(điểm G)

b. cmr điểm G thuộc 1 đường thẳng cố định khi m thay đổi

B6: cho pt \(2x^2-4mx+2m^2-1=0\)(1)

a. cmr pt (1) luôn có 2 nghiệm phân biệt \(\forall m\)

b. tìm m để pt (1) có 2 nghiệm thỏa mãn \(2x_1^2+4mx_2+2m^2-1>0\)

B7: cho pt \(x^2-2mx-16+5m^2=0\)(1)

a. tìm m để (1) có nghiệm

b. gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm GTLN và GTNN của biểu thức A=\(x_1\left(5x_1+3x_2-17\right)+x_2\left(5x_2+3x_1-17\right)\)

0
16 tháng 3 2019

a) Để phương trình có nghiệm

\(\Leftrightarrow\Delta\ge0\)

\(\Leftrightarrow\left(-1\right)^2-4.\left(-3m\right)\ge0\)

\(\Leftrightarrow1+12m\ge0\)

\(\Leftrightarrow m\ge-\frac{1}{12}\)

3 tháng 4 2020

b) Ta có : \(\Delta'=m^2-2m+1-m^2+m\)

             \(=-m+1\)

để phương trình có đúng một nghiệm, thì : \(\Delta'=0\)\(\Leftrightarrow-m+1=0\)\(\Rightarrow m=1\)

c) Ta có: \(\Delta'=m^2-\left(m-3\right)\left(m-6\right)\)

             \(=m^2-m^2+6m+3m-18\)

                \(=9m-18\)

                \(=9\left(m-2\right)\)

     Để phương trình có 2 nghiệm phân biệt thì : \(\Delta'>0\)\(\Leftrightarrow9\left(m-2\right)>0\)

                                                                                               \(\Leftrightarrow m-2>0\)\(\Leftrightarrow m>2\)

c, phương trình c có 2 nghiệm \(\leftrightarrow\leftrightarrow\)\(\Delta\)= -36m + 72>0
<=> m <2

b,phương trình c có 1 nghiệm phân biệt khi và chỉ khi: \(\Delta\)= -4m+4=0

<=> m= 1