Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta'=b'^2-ac=-6m+7=>\)\(m\ge\frac{7}{6}\)
Theo Vi-ét : \(\hept{\begin{cases}x_1+x_2=2\left(m-2\right)\\x_1.x_2=m^2+2m-3\end{cases}}\)Mà \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{5}=>\)\(\frac{x_1+x_2}{x_1.x_2}=\frac{x_1+x_2}{5}\)
=> \(x_1.x_2=5\)<=> \(m^2+2m-3=5\)<=> \(m^2+2m-8=0\)
Giải pt trên ta đc : \(\orbr{\begin{cases}m=2\\m=-4\end{cases}}\)Mà \(m\ge\frac{7}{6}\)=> \(m=2\)
dùng đen ta phẩy để giải pt.
kết quả khi m > \(\frac{5}{6}\)thì pt có nghiệm
theo vi-ét ta có: x1 + x2 = \(\frac{-b}{a}=\frac{2\left(m-2\right)}{1}=2\left(m-2\right)\)(1)
x1 . x2 = \(\frac{c}{a}=\frac{m^2+2m-3}{1}=m^2+2m-3\)(2)
theo đầu bài ta có: \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{5}\)
<=> \(\frac{x_2+x_1}{x_1.x_2}=\frac{x_1+x_2}{5}\)(3)
thay (1) và (2) vào (3) r tính m. kết quả khi m=2 thì pt có nghiệm thỏ mãn đk đó.
Δ = b2 - 4ac = [ -2( m + 1 ) ]2 - 16m
= 4( m2 + 2m + 1 ) - 16m
= 4m2 + 8m + 4 - 16m = 4m2 - 8m + 4
= 4( m2 - 2m + 1 ) = 4( m - 1 )2 ≥ 0 ∀ m
=> (1) luôn có nghiệm với mọi m
Theo hệ thức Viète ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2m+2\\x_1x_2=\frac{c}{a}=4m\end{cases}}\)
a) Để (1) có hai nghiệm đối nhau thì \(\hept{\begin{cases}x_1+x_2=0\\x_1x_2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}2m+2=0\\4m< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}m=-1\\m< 0\end{cases}}\Leftrightarrow m=-1\left(tm\right)\)
b) \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=4\left(ĐKXĐ:x_1,x_2\ne0\right)\)
\(\Leftrightarrow\frac{x_1^2}{x_1x_2}+\frac{x_2^2}{x_1x_2}=4\)
\(\Rightarrow x_1^2+x_2^2=4x_1x_2\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-6x_1x_2=0\)
\(\Leftrightarrow4m^2+8m+4-24m=0\)
\(\Leftrightarrow m^2-4m+1=0\)
Đến đây bạn dùng công thức nghiệm rồi tính nốt nhé :)
có 2 nghiệm phân biệt chi và chỉ khi \(\Delta^,=\left(m-2\right)^2-m^2-2m+3>0\)
\(\Leftrightarrow m^2-4m+4-m^2-2m+3>0\)
\(\Leftrightarrow-6m+7>0\Leftrightarrow m< \frac{7}{6}\)
Có \(\Delta=\left(2m-1\right)^2-4\left(m+1\right)\)
\(=4m^2-4m+1-4m-4\)
\(=4m^2-8m-3\)
Để pt có 2 nghiệm phân biệt thì \(\Delta>0\Leftrightarrow\orbr{\begin{cases}m< \frac{2-\sqrt{7}}{2}\\m>\frac{2+\sqrt{7}}{2}\end{cases}}\)(1)
Theo Vi-et \(\hept{\begin{cases}x_1+x_2=1-2m\\x_1x_2=m+1\end{cases}}\)
Vì \(x_1>x_2>0\Rightarrow\hept{\begin{cases}x_1+x_2>0\\x_1x_2>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}1-2m>0\\m+1>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}m< \frac{1}{2}\\m>-1\end{cases}}\)
\(\Leftrightarrow-1< m< \frac{1}{2}\)(2)
Từ (1) và (2) \(\Rightarrow-1< m< \frac{2-\sqrt{7}}{2}\)
Theo hệ thức viet
\(\int^{x1+x2=m+3\left(1\right)}_{x1x2=-2\left(m+2\right)\left(2\right)}\)
Kết hợp (1) và gt x1 = 2x2 ta có pt
3x2 = m + 3 => x2 = \(\frac{m+3}{3}\) => x1 = \(\frac{2\left(m+3\right)}{3}\)
Thay vào (2) giải pt ẩn m . sau đó kiểm tra lại
\(\Delta=\left(-m\right)^2-4\left(m+1\right)=m^2-4m-4=-\left(m+2\right)^2\)
Để có 2 nghiệm phân biệt thì \(\Delta>0\Rightarrow-\left(m+2\right)^2>0\Rightarrow m+2<0\Rightarrow m<-2\)
\(\Rightarrow x_1=\frac{m-\sqrt{m+2}}{2}\) ; \(x_2=\frac{m+\sqrt{m+2}}{2}\)
Theo đề ta có: x1 = 2.x2
\(\Rightarrow\frac{m-\sqrt{m+2}}{2}=\frac{m+\sqrt{m+2}}{2}\) \(\Rightarrow m-\sqrt{m+2}=m+\sqrt{m+2}\)
\(\Rightarrow-2\sqrt{m+2}=0\) \(\Rightarrow4.\left(m+2\right)=0\Rightarrow m+2=0\Rightarrow m=-2\) (loại)
Vậy k có x thỏa mãn