giải giúp mk vs mk sắp thi rùi!!!
1. a. Cho P=√x√xy+√x+3+√y√yz+√y+1+3√z√xz+3√z+3xxy+x+3+yyz+y+1+3zxz+3z+3 và xyz =9.
Tính √10P−110P−1
b. Cho x,y,z >0 thỏa mãn: x+y+z + √xyzxyz =4 .
Tính B= √x(4−y)(4−z)+√y(4−z)(4−x)+√z(4−x(4−y))x(4−y)(4−z)+y(4−z)(4−x)+z(4−x(4−y))
2. a. giải phương trình x2(x+2)2+3=3x2−6xx2(x+2)2+3=3x2−6x
b. {x2+y2+xy+1=2xx(x+y)2+x−2=2y2{x2+y2+xy+1=2xx(x+y)2+x−2=2y2
3. a.Tìm tất cả các...
Đọc tiếp
giải giúp mk vs mk sắp thi rùi!!!
1. a. Cho P=√x√xy+√x+3+√y√yz+√y+1+3√z√xz+3√z+3xxy+x+3+yyz+y+1+3zxz+3z+3 và xyz =9.
Tính √10P−110P−1
b. Cho x,y,z >0 thỏa mãn: x+y+z + √xyzxyz =4 .
Tính B= √x(4−y)(4−z)+√y(4−z)(4−x)+√z(4−x(4−y))x(4−y)(4−z)+y(4−z)(4−x)+z(4−x(4−y))
2. a. giải phương trình x2(x+2)2+3=3x2−6xx2(x+2)2+3=3x2−6x
b. {x2+y2+xy+1=2xx(x+y)2+x−2=2y2{x2+y2+xy+1=2xx(x+y)2+x−2=2y2
3. a.Tìm tất cả các nghiệm nguyên của phương trình x2+x+2y2+y=2xy2+xy+3x2+x+2y2+y=2xy2+xy+3
b. CMR: a31+a32+a33+....+a3na13+a23+a33+....+an3 chia hết cho 3 biết a1,a2,a3,...,ana1,a2,a3,...,an là các chữ số của 2019201820192018
4. Cho tam giác MNP có 3 góc M, N, P nhọn, nội tiếp đường tròn tâm O bán kính R. Gọi Q là trung điểm của NP và các đường cao MD, NE, PF của tam giác MNP cắt nhau tại H.
a. MH =2OQ
b. Nếu MN+MP = 2NP thì sin N+ sin P = 2sinM
c. ME.FH +MF .HE = R2√2R22 biết NP = R√2R2
5. Cho a,b,c dương thỏa mãn 1ab+1bc+1ca=31ab+1bc+1ca=3 . Tìm GTNN của P= ab2a+b+bc2b+c+ca2c+a
Sợ bạn thật,hỏi cả trên olm vs h luôn
Ta thấy:\(\Delta=\left(m-4\right)^2+12>0\)
Do đó phuognw trình có 2 nghiệm phân biệt với mọi m
Do đó,theo định lý vi-ét,ta có:
\(\Rightarrow\hept{\begin{cases}x_1x_2=-3\\x_1+x_2=m-4\end{cases}}\)
Vì \(x_1x_2=-3< 0\)nên x1 và x2 trái dấu nhau
Giả sử x1<0 do đó x2>0
\(\Rightarrow\left|x_2\right|=x_2\)
\(\Rightarrow x_1-\left|x_2\right|< 0\Rightarrow10< 0\left(L\right)\)
Như vậy suy ra\(\hept{\begin{cases}x_1>0\\x_2< 0\Rightarrow\left|x_2\right|=-x_2\end{cases}}\)
\(\Rightarrow x_1-\left|x_2\right|=x_1+x_2=10\)
Mà \(x_1+x_2=m-4\)
\(\Rightarrow m-4=10\Rightarrow m=14\)
Vậy khi m=14 thì pt có 2 nghiệm phân biệt