Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2x² - 3x + 2 = (1/8)(16x² - 24x + 9) + 7/8 = (1/8)(4x - 3)² + 7/8 > 0 nên |2x² - 3x + 2| = 2x² - 3x + 2
|2x² - 3x + 2| = 5m - 8x - 2x²
⇔ 2x² - 3x + 2 = 5m - 8x - 2x²
⇔ 4x² + 5x + 2 - 5m = 0
Để PT có nghiệm duy nhất thì đó phải là nhiệm kép :
Δ = 25 - 16(2 - 5m) = 80m - 7 = 0 ⇔ m = 7/80
a, (1) có nghiệm duy nhất trên [-2 ; 2] khi
[-2 ; 2] khi \(\left[{}\begin{matrix}-4m=-8\\1\ge-4m>-7\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}m=2\\\dfrac{-1}{4}\le m< \dfrac{7}{4}\end{matrix}\right.\) hay m ϵ [\(\dfrac{-1}{4};\dfrac{7}{4}\)) \(\cup\left\{2\right\}\)
(1) có nghiệm duy nhất trên [2 ; 3] khi
- 4 ≥ - 4m ≥ - 7 ⇔ 1 ≤ m ≤ \(\dfrac{7}{4}\) hay m ∈\(\left[1;\dfrac{7}{4}\right]\)
(1) có nghiệm duy nhất trên [-2; -1] khi
-4 ≤ 4m ≤ 1 hay m ∈ \(\left[\dfrac{-1}{4};1\right]\)
b, (1) có 2 nghiệm phân biệt trên [-2 ; 2] khi
-4m ∈ (-8 ; -7] ⇒ m ∈\(\)[\(\dfrac{7}{4}\); 2)
(1) có 2 nghiệm phân biệt trên [2; 3] và [-2; -1] khi m ∈ ∅
c, (1) có nghiệm trên đoạn
[-2; 2] khi -8 ≤ -4m ≤ 1 ⇒ m ∈ \(\left[\dfrac{-1}{4};2\right]\)
[2 ; 3] khi - 4 ≥ - 4m ≥ - 7 hay m ∈\(\left[1;\dfrac{7}{4}\right]\)
[-2 ; -1] khi -4 ≤ 4m ≤ 1 hay m ∈ \(\left[\dfrac{-1}{4};1\right]\)
d, dường như là nó giống câu b,
e, (1) vô nghiệm trên đoạn [-2 ; 2] khi
\(\left[{}\begin{matrix}-4m>1\\-4m< -8\end{matrix}\right.\)hay \(m\in\left(-\infty;\dfrac{-1}{4}\right)\cup\left(2;+\infty\right)\)
(1) vô nghiệm trên đoạn [2; 3] khi
m ∈ R \ \(\left[1;\dfrac{7}{4}\right]\)
(1) vô nghiệm trên [-2 ; -1] khi m ∈ R \ \(\left[\dfrac{-1}{4};1\right]\)
Có sai sót xin thông cảm
P/s :Bạn tự vẽ bảng biến thiên nha, nhớ chia khoảng cách các giá trị của x cho chuẩn vào, nhớ thêm cả f(0) và trong bảng nhá
b: \(\Leftrightarrow\left[{}\begin{matrix}x^2-3x-4=2m-1\\x^2-3x-4=-2m+1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2-3x-4-2m+1=0\\x^2-3x-4+2m-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-3x-2m+3=0\\x^2-3x+2m-5=0\end{matrix}\right.\)
Để phương trình có bốn nghiệm phân biệt thì \(\left\{{}\begin{matrix}9-4\left(-2m+3\right)>0\\9-4\left(2m-5\right)>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9+8m-12>0\\9-8m+20>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}8m>3\\8m< 29\end{matrix}\right.\Leftrightarrow\dfrac{3}{8}< m< \dfrac{29}{8}\)