K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Δ=(2m+2)^2-4(m^2+2)

=4m^2+8m+4-4m^2-8=8m-4

Để phương trình có 2 n0 phân biệt thì 8m-4>0

=>m>1/2

x1^2+3x2^2=4x1x2

=>x1^2-4x1x2+3x2^2=0

=>(x1-x2)(x1-3x2)=0

=>x1=x2 hoặc x1=3x2

TH1: x1=x2 

x1+x2=2m+2

=>x1=x2=m+1

x1x2=m^2+2

=>m^2+2=m^2+2m+1

=>2m=1

=>m=1/2(loại)

TH2: x1=3x2

x1+x2=2m+2

=>4x2=2m+2 và x1=3x2

=>x2=1/2m+1/2 và x1=3/2m+3/2

x1x2=m^2+2

=>3/4(m^2+2m+1)=m^2+2

=>m^2+2=3/4m^2+3/2m+3/4

=>1/4m^2-3/2m+5/4=0

=>m=5(nhận) hoặc m=1(nhận)

12 tháng 8 2021

b) phương trình có 2 nghiệm  \(\Leftrightarrow\Delta'\ge0\)

\(\Leftrightarrow\left(m-1\right)^2-\left(m-1\right)\left(m+3\right)\ge0\)

\(\Leftrightarrow m^2-2m+1-m^2-3m+m+3\ge0\)

\(\Leftrightarrow-4m+4\ge0\)

\(\Leftrightarrow m\le1\)

Ta có: \(x_1^2+x_1x_2+x_2^2=1\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=1\)

Theo viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\left(m-1\right)\\x_1x_2=\dfrac{c}{a}=m+3\end{matrix}\right.\)

\(\Leftrightarrow\left[-2\left(m-1\right)^2\right]-2\left(m+3\right)=1\)

\(\Leftrightarrow4m^2-8m+4-2m-6-1=0\)

\(\Leftrightarrow4m^2-10m-3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m_1=\dfrac{5+\sqrt{37}}{4}\left(ktm\right)\\m_2=\dfrac{5-\sqrt{37}}{4}\left(tm\right)\end{matrix}\right.\Rightarrow m=\dfrac{5-\sqrt{37}}{4}\)

 

25 tháng 2 2022

a, bạn tự làm 

b, Thay x = 3 vào pt trên ta được 

\(9-3m-3=0\Leftrightarrow6-3m=0\Leftrightarrow m=2\)

Thay m = 2 vào ta được \(x^2-2x-3=0\)

Ta có a - b + c = 1 + 2 - 3 = 0 

vậy pt có 2 nghiệm x = -1 ; x = 3 

c, \(\Delta=m^2-4\left(-3\right)=m^2+12>0\)

vậy pt luôn có 2 nghiệm pb 

\(x_1x_2+5\left(x_1+x_2\right)-1997=0\)

\(\Rightarrow-3+5m-1997=0\Leftrightarrow5m-2000=0\Leftrightarrow m=400\)

 

15 tháng 11 2023

 Ta nhận thấy tổng các hệ số của pt bậc 2 đã cho là \(1-a+a-1=0\) nên pt này có 1 nghiệm là 1, nghiệm kia là \(a-1\), nhưng do không được giải pt nên ta sẽ làm theo cách sau:

 Ta thấy pt này luôn có 2 nghiệm phân biệt. Theo hệ thức Viète:

 \(\left\{{}\begin{matrix}x_1+x_2=a\\x_1x_2=a-1\end{matrix}\right.\)

 Vậy, \(M=\dfrac{3\left(x_1^2+x_2^2\right)-3}{x_1x_2\left(x_1+x_2\right)}\)

\(M=\dfrac{3\left[\left(x_1+x_2\right)^2-2x_1x_2\right]-3}{a\left(a-1\right)}\)

\(M=\dfrac{3\left(a^2-2\left(a-1\right)\right)-3}{a\left(a-1\right)}\)

\(M=\dfrac{3\left[\left(a-1\right)^2-1\right]}{a\left(a-1\right)}\)

\(M=\dfrac{3a\left(a+2\right)}{a\left(a-1\right)}\)

\(M=\dfrac{3a+6}{a-1}\)

b) Ta có \(P=\left(x_1+x_2\right)^2-2x_1x_2=a^2-2\left(a-1\right)=\left(a-1\right)^2\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow a=1\). Vậy để P đạt GTNN thì \(a=1\)

NV
27 tháng 3 2021

Đề bài sai bạn

Biểu thức \(\left|\dfrac{x_1+x_2+4}{x_1+x_2}\right|=\left|1+\dfrac{1}{m}\right|\)  này ko tồn tại max, chỉ tồn tại min

27 tháng 3 2021

Chúc thầy buổi tối vui vẻ . Thầy giúp em câu em vừa inb nhé !

Và cho em hỏi là thứ 2 từ 7-9h sáng thầy có online không ạ ?

24 tháng 3 2022

b1: tìm đk m t/m: Δ>0 ↔ m∈(\(\dfrac{1-\sqrt{10}}{2}\) ; \(\dfrac{1+\sqrt{10}}{2}\))

b2: ➝x1+x2 =-2m-1 (1)

      → x1.x2=m^2-1 (2)

b3: biến đổi : (x1-x2)^2 = x1-5x2

↔ (x1+x2)^2 -4.x1.x2 -(x1+x2) +6.x2=0

↔4.m^2 +4m +1 - 4.m^2 +4 +2m+1+6. x2=0

↔x2= -m-1

B4: thay x2= -m-1 vào (1) → x1 = -m

     Thay x2 = -m-1, x1 = -m vào (2) 

→m= -1

B5: thử lại:

Với m= -1 có pt: x^2 -x =0

Có 2 nghiệm x1=1 và x2=0 (thoả mãn)

NV
22 tháng 4 2021

\(\Delta=m^2+12>0\) ; \(\forall m\)

\(\Rightarrow\) Khi \(n=0\) thì pt có nghiệm với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=n-3\end{matrix}\right.\)

Ta có: \(\left\{{}\begin{matrix}x_1-x_2=1\\x_1^2-x_2^2=7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1-x_2=1\\\left(x_1+x_2\right)\left(x_1-x_2\right)=7\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1-x_2=1\\x_1+x_2=7\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=4\\x_2=3\end{matrix}\right.\)

Thế vào hệ thức Viet: \(\left\{{}\begin{matrix}4+3=-m\\4.3=n-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m=-7\\n=15\end{matrix}\right.\)