Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì $\sqrt{1+x}\ge 0,\sqrt{8-x}\ge 0,\sqrt{(1+x)(8-x)}\ge 0$
$\to \sqrt{1+x}+\sqrt{8-x}+\sqrt{(1+x)(8-x)}\ge 0$
mà $\sqrt{1+x}+\sqrt{8-x}+\sqrt{(1+x)(8-x)}=m$
=> m≥0
Đặt :
\(t=\sqrt{1+x}+\sqrt{8-x}\) \(\left(t\ge0\right)\)
DKXĐ : \(-1\le x\le8\)
\(\Leftrightarrow t^2=9+2\sqrt{\left(1+x\right)\left(8-x\right)}\) (1)
BBT của \(t^2\) :
\(x\) | \(-1\) \(0\) \(8\) |
\(t^2\) | \(9+2\sqrt{2}\) \(9\) \(9\) |
\(t\) | \(1+2\sqrt{2}\) \(1\) \(2\sqrt{2}\) |
\(\Leftrightarrow t\in\left(1,2\sqrt{2}\right)\)
Thay \(\left(1\right)\) vào pt ta có :\(\Leftrightarrow\sqrt{\left(1+x\right)\left(8-x\right)}=\dfrac{t^2-9}{2}\) (1)
\(\Leftrightarrow f\left(t\right)=t^2+2t-9=2m\)
BBT của \(f\left(t\right)\) :
\(t\) | \(1\) \(2\sqrt{2}\) |
\(f\left(t\right)\) | \(4\sqrt{2}-1\) \(-6\) |
\(\Leftrightarrow2m\in\left[-6;4\sqrt{2}-1\right]\) thì pt có nghiệm
\(\Leftrightarrow m\in\left(-3;\dfrac{-1+4\sqrt{2}}{2}\right)\)
Vẽ dùm mình mấy cái mũi tên trên BBT nhé UwU
Để pt có nghiệm thì
\(1+x\ne0\) và \(8-x\ne0\)
\(\Rightarrow x\ne-1\) và \(x\ne8\)
\(\sqrt{1+x} +\sqrt{8-x}+\sqrt{\left(1+x\right)\left(8-x\right)}=m\)
( mk viết thiếu đề)
Giống bài trước, \(x=3+2\sqrt{2}\) là nghiệm
\(\Rightarrow y=\dfrac{mx+1}{x-m}\Rightarrow y'=\dfrac{-m^2-1}{\left(x-m\right)^2}\) nghịch biến trên miền xác định
\(\Rightarrow\max\limits_{\left[1;2\right]}y=y\left(1\right)=\dfrac{m+1}{1-m}=-2\Rightarrow m\)
Điều kiện x>1
Từ (1) ta có \(\log_{\sqrt{3}}\frac{x+1}{x-1}>\log_34\) \(\Leftrightarrow\frac{x+1}{x-1}>2\) \(\Leftrightarrow\) 1<x<3
Đặt \(t=\log_2\left(x^2-2x+5\right)\)
Tìm điều kiện của t :
- Xét hàm số \(f\left(x\right)=\log_2\left(x^2-2x+5\right)\) với mọi x thuộc (1;3)
- Đạo hàm : \(f\left(x\right)=\frac{2x-2}{\ln2\left(x^2-2x+5\right)}>\) mọi \(x\in\left(1,3\right)\)
Hàm số đồng biến nên ta có \(f\left(1\right)\) <\(f\left(x\right)\) <\(f\left(3\right)\) \(\Leftrightarrow\)2<2<3
- Ta có \(x^2-2x+5=2'\)
\(\Leftrightarrow\) \(\left(x-1\right)^2=2'-4\)
Suy ra ứng với mõi giá trị \(t\in\left(2,3\right)\) ta luôn có 1 giá trị \(x\in\left(1,3\right)\)
Lúc đó (2) suy ra : \(t-\frac{m}{t}=5\Leftrightarrow t^2-5t=m\)
Xét hàm số : \(f\left(t\right)=t^2-5t\) với mọi \(t\in\left(2,3\right)\)
- Đạo hàm : \(f'\left(t\right)=2t-5=0\Leftrightarrow t=\frac{5}{2}\)
- Bảng biến thiên :
x | 2 \(\frac{5}{2}\) 3 |
y' | + 0 - |
y | -6 -6 -\(\frac{25}{4}\) |
Để hệ có 2 cặp nghiệm phân biệt \(\Leftrightarrow-6>-m>-\frac{25}{4}\)\(\Leftrightarrow\)\(\frac{25}{4}\) <m<6
Đặt \(\sqrt{1+x^2}-\sqrt{1-x^2}=a\)
\(a^2=2-2\sqrt{1-x^4}\Rightarrow\left\{{}\begin{matrix}0\le a\le\sqrt{2}\\2\sqrt{1-x^4}=2-a^2\end{matrix}\right.\)
Phương trình trở thành:
\(m\left(a+2\right)=2-a^2+a-1\)\(\Leftrightarrow m=\frac{-a^2+a-1}{a+2}\)
Xét \(f\left(a\right)=\frac{-a^2+a-1}{a+2}\Rightarrow f'\left(a\right)=\frac{\left(-2a+1\right)\left(a+2\right)+a^2-a+1}{\left(a+2\right)^2}=\frac{-a^2-4a+3}{\left(a+2\right)^2}\)
\(f'\left(a\right)=0\Rightarrow a=-2+\sqrt{7}\)
\(f\left(0\right)=-\frac{1}{2};f\left(\sqrt{2}\right)=\frac{-8+5\sqrt{2}}{2};f\left(-2+\sqrt{7}\right)=5-2\sqrt{7}\)
\(\Rightarrow\) Để pt có nghiệm thì \(-\frac{1}{2}\le m\le5-2\sqrt{7}\)
b/ Xét hàm \(f\left(x\right)=\sqrt{1+x^2}-\sqrt{1-x^2}\)
\(f'\left(x\right)=\frac{x}{\sqrt{1+x^2}}+\frac{x}{\sqrt{1-x^2}}=x\left(\frac{1}{\sqrt{1+x^2}}+\frac{1}{\sqrt{1-x^2}}\right)\)
\(f'\left(x\right)=0\Rightarrow x=0\)
\(\Rightarrow f\left(x\right)\) đồng biến trên \(\left[0;1\right]\) và nghịch biến trên \(\left[-1;0\right]\)
\(f\left(0\right)=0;f\left(1\right)=f\left(-1\right)=\sqrt{2}\)
\(\Rightarrow a=0\) thì \(y=a\) cắt \(y=f\left(x\right)\) tại 1 điểm duy nhất (tiếp xúc)
\(0< a\le\sqrt{2}\) thì \(y=a\) cắt \(y=f\left(x\right)\) tại 2 điểm phân biệt
\(\Rightarrow\) Để phương trình đã cho có 4 nghiệm thì \(y=m\) cắt \(y=f\left(a\right)\) tại 2 điểm phân biệt
Dựa vào BBT của câu a ta được: \(\frac{-8+2\sqrt{5}}{2}\le m< 5-2\sqrt{7}\)
ĐKXĐ: ...
Đặt \(\sqrt{x+1}+\sqrt{3-x}=t\Rightarrow\left\{{}\begin{matrix}2\le t\le2\sqrt{2}\\\sqrt{\left(x+1\right)\left(3-x\right)}=\frac{t^2-4}{2}\end{matrix}\right.\)
\(\Rightarrow t-\frac{t^2-4}{2}=m\Leftrightarrow-\frac{1}{2}t^2+t+2=m\)
Xét \(f\left(t\right)=-\frac{1}{2}t^2+t+2\) trên \(\left[2;2\sqrt{2}\right]\)
\(f\left(2\right)=2\) ; \(f\left(2\sqrt{2}\right)=2\sqrt{2}-2\)
\(\Rightarrow2\sqrt{2}-2\le m\le2\)
Câu 1:
Để ý rằng \((2-\sqrt{3})(2+\sqrt{3})=1\) nên nếu đặt
\(\sqrt{2+\sqrt{3}}=a\Rightarrow \sqrt{2-\sqrt{3}}=\frac{1}{a}\)
PT đã cho tương đương với:
\(ma^x+\frac{1}{a^x}=4\)
\(\Leftrightarrow ma^{2x}-4a^x+1=0\) (*)
Để pt có hai nghiệm phân biệt \(x_1,x_2\) thì pt trên phải có dạng pt bậc 2, tức m khác 0
\(\Delta'=4-m>0\Leftrightarrow m< 4\)
Áp dụng hệ thức Viete, với $x_1,x_2$ là hai nghiệm của pt (*)
\(\left\{\begin{matrix} a^{x_1}+a^{x_2}=\frac{4}{m}\\ a^{x_1}.a^{x_2}=\frac{1}{m}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a^{x_2}(a^{x_1-x_2}+1)=\frac{4}{m}\\ a^{x_1+x_2}=\frac{1}{m}(1)\end{matrix}\right.\)
Thay \(x_1-x_2=\log_{2+\sqrt{3}}3=\log_{a^2}3\) :
\(\Rightarrow a^{x_2}(a^{\log_{a^2}3}+1)=\frac{4}{m}\)
\(\Leftrightarrow a^{x_2}(\sqrt{3}+1)=\frac{4}{m}\Rightarrow a^{x_2}=\frac{4}{m(\sqrt{3}+1)}\) (2)
\(a^{x_1}=a^{\log_{a^2}3+x_2}=a^{x_2}.a^{\log_{a^2}3}=a^{x_2}.\sqrt{3}\)
\(\Rightarrow a^{x_1}=\frac{4\sqrt{3}}{m(\sqrt{3}+1)}\) (3)
Từ \((1),(2),(3)\Rightarrow \frac{4}{m(\sqrt{3}+1)}.\frac{4\sqrt{3}}{m(\sqrt{3}+1)}=\frac{1}{m}\)
\(\Leftrightarrow \frac{16\sqrt{3}}{m^2(\sqrt{3}+1)^2}=\frac{1}{m}\)
\(\Leftrightarrow m=\frac{16\sqrt{3}}{(\sqrt{3}+1)^2}=-24+16\sqrt{3}\) (thỏa mãn)
Câu 2:
Nếu \(1> x>0\)
\(2017^{x^3}>2017^0\Leftrightarrow 2017^{x^3}>1\)
\(0< x< 1\Rightarrow \frac{1}{x^5}>1\)
\(\Rightarrow 2017^{\frac{1}{x^5}}> 2017^1\Leftrightarrow 2017^{\frac{1}{x^5}}>2017\)
\(\Rightarrow 2017^{x^3}+2017^{\frac{1}{x^5}}> 1+2017=2018\) (đpcm)
Nếu \(x>1\)
\(2017^{x^3}> 2017^{1}\Leftrightarrow 2017^{x^3}>2017 \)
\(\frac{1}{x^5}>0\Rightarrow 2017^{\frac{1}{x^5}}>2017^0\Leftrightarrow 2017^{\frac{1}{5}}>1\)
\(\Rightarrow 2017^{x^3}+2017^{\frac{1}{x^5}}>2018\) (đpcm)