K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}x^2-4x+1=2x-4\\y=2x-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2-6x+5=0\\y=2x-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(x-5\right)=0\\y=2x-4\end{matrix}\right.\)

\(\Leftrightarrow\left(x,y\right)\in\left\{\left(1;-2\right);\left(5;6\right)\right\}\)

c: Điểm M,N ở đâu vậy bạn?

7 tháng 4 2017

cau a: pt chính tắc của đường tròn là: \(\left(x-m\right)^2+\left(y+m\right)^2=\left(\sqrt{m^2+2m-3}\right)^2\left(C\right)\)

​tâm I \(\left(m;-m\right)\) .​bán kính R =\(\sqrt{m^2+2m-3}\)

điều kiện để tồn tại đườn tròn (C) la: -3<m hoặc m> 1 (1)

(C) tiếp xúc với 2 trục tọa độ \(\Leftrightarrow\left|m\right|=\left|-m\right|=R\)

​th1: m =m va \(\sqrt{m^2+2m-3}=\left|m\right|\Leftrightarrow m=3\) . kết hợp với điều kiện (1) \(\Rightarrow m=3\)

th2 : m=-m \(\Rightarrow m=0\) loai vi dieu kien (1)

cau b:truc Ox co phuong trinh la : y= 0.

giao điểm A, B cua (C) voi Ox thoa :\(\left\{{}\begin{matrix}y=0\\\left(x-m\right)^2=2m-3\left(m>\dfrac{3}{2}\right)\left(\circledast\right)\end{matrix}\right.\Rightarrow A\left(m+\sqrt{2m-3},0\right),B\left(m-\sqrt{2m-3},0\right)\)

bai ra AB=2 \(\Leftrightarrow\left|m-\sqrt{2m-3}-m-\sqrt{2m-3}\right|=2\)

\(\left|\sqrt{2m-3}\right|=1\Rightarrow\left[{}\begin{matrix}m=2\\m=1\end{matrix}\right.\)\(\Leftrightarrow m=2\left(thoa\circledast\right)\)

​vậy m=2

8 tháng 4 2017

đính chính:m>1 ;m<-3

26 tháng 12 2020

Phương trình hoành độ giao điểm:

\(x^2+2x-m+1=x+1\)

\(\Leftrightarrow x^2+x-m=0\left(1\right)\)

\(\left(d\right),\left(P\right)\) cắt nhau tại hai điểm phân biệt khi phương trình \(\left(1\right)\) có hai nghiệm phân biệt 

\(\Leftrightarrow\Delta=4m+1>0\Leftrightarrow m>-\dfrac{1}{4}\)

Phương trình \(\left(1\right)\) có hai nghiệm phân biệt \(x=\dfrac{-1\pm\sqrt{4m+1}}{2}\)

\(x=\dfrac{-1+\sqrt{4m+1}}{2}\Rightarrow y=\dfrac{1+\sqrt{4m+1}}{2}\Rightarrow A\left(\dfrac{-1+\sqrt{4m+1}}{2};\dfrac{1+\sqrt{4m+1}}{2}\right)\)

\(x=\dfrac{-1-\sqrt{4m+1}}{2}\Rightarrow y=\dfrac{1-\sqrt{4m+1}}{2}\Rightarrow B\left(\dfrac{-1-\sqrt{4m+1}}{2};\dfrac{1-\sqrt{4m+1}}{2}\right)\)

\(AB=8\Leftrightarrow\sqrt{8m+2}=8\Leftrightarrow m=\dfrac{31}{4}\left(tm\right)\)

26 tháng 12 2020

2.

a, \(AB=2\sqrt{5},BC=5\sqrt{10},CA=\sqrt{170}\)

\(AM^2=\dfrac{AB^2+AC^2}{2}-\dfrac{BC^2}{4}=\dfrac{65}{2}\Rightarrow AM=\dfrac{\sqrt{130}}{2}\)

b, \(\left\{{}\begin{matrix}x_D-4-2\left(x_D-2\right)+4\left(x_D+3\right)=0\\y_D-3-2\left(y_D-7\right)+4\left(y_D+8\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_D=-4\\y_D=-\dfrac{14}{3}\end{matrix}\right.\)

\(\Rightarrow D\left(-4;-\dfrac{14}{3}\right)\)

c, \(\left\{{}\begin{matrix}\overrightarrow{AA'}=\left(x_{A'}-4;y_{A'}-3\right)\\\overrightarrow{BC}=\left(-5;-15\right)\\\overrightarrow{BA'}=\left(x_{A'}-2;y_{A'}-7\right)\end{matrix}\right.\)

\(AA'\perp BC\Leftrightarrow\left\{{}\begin{matrix}\overrightarrow{AA'}.\overrightarrow{BC}=0\left(1\right)\\\overrightarrow{BA'}=k\overrightarrow{BC}\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow-5\left(x_{A'}-4\right)-15\left(y_{A'}-3\right)=0\Leftrightarrow x_{A'}+3y_{A'}=13\)

\(\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}x_{A'}-2=-5k\\y_{A'}-7=-15k\end{matrix}\right.\Leftrightarrow3x_{A'}-y_{A'}=-1\)

\(\left\{{}\begin{matrix}x_{A'}+3y_{A'}=13\\3x_{A'}-y_{A'}=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_{A'}=1\\y_{A'}=4\end{matrix}\right.\Rightarrow A'\left(1;4\right)\)

 

27 tháng 7 2017

@Nguyễn Huy Tú @Ace Legona@Akai Haruma

28 tháng 6 2020

Sửa dòng cuối bạn nhé! :3

\(\left[{}\begin{matrix}\left(C_m\right):x^2+y^2-6x-20y+5=0\\\left(C_m\right):x^2+y^2-6x+28y+5=0\end{matrix}\right.\)