Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\Delta_1\) nhận \(\left(2;1\right)\) là 1 vppt; \(\Delta_2\) nhận \(\left(1;m\right)\) là 1 vtpt
a/ Để 2 đường thẳng song song \(\Rightarrow2m=1\Rightarrow m=\frac{1}{2}\)
Khi đó pt \(\Delta_2\) viết lại: \(2x+y+2=0\)
Khoảng cách 2 đường thẳng: \(d=\frac{\left|c_1-c_2\right|}{\sqrt{a^2+b^2}}=\frac{\left|-3-2\right|}{\sqrt{2^2+1^2}}=\sqrt{5}\)
b/Với \(m=2\Rightarrow\Delta_2\) nhận \(\left(1;2\right)\) là 1 vtpt
\(cos\left(\Delta_1;\Delta_2\right)=\frac{\left|2.1+1.2\right|}{\sqrt{2^2+1^2}.\sqrt{1^2+2^2}}=\frac{4}{5}\)
\(\Rightarrow sin\left(\Delta_1;\Delta_2\right)=\sqrt{1-\left(\frac{4}{5}\right)^2}=\frac{3}{5}\)
c/ Chắc là k/c từ gốc O
\(d\left(O;\Delta_1\right)=\frac{\left|2.0+1.0-3\right|}{\sqrt{2^2+1^2}}=\frac{3}{\sqrt{5}}\)
\(d\left(O;\Delta_2\right)=\frac{\left|1.0+m.0+1\right|}{\sqrt{1+m^2}}=\frac{1}{\sqrt{1+m^2}}\)
\(\Rightarrow\frac{1}{\sqrt{1+m^2}}=\frac{6}{\sqrt{5}}\Leftrightarrow1+m^2=\frac{5}{36}\Leftrightarrow m^2=-\frac{29}{36}< 0\)
Không tồn tại m thỏa mãn
d/ I là điểm nào bạn?
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 2:
Tọa độ giao điểm của Δ1 và Δ2 là:
\(\left\{{}\begin{matrix}2x+y=4\\5x-2y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{9}\\y=\dfrac{26}{9}\end{matrix}\right.\)
Thay x=5/9 và y=26/9 vào Δ3, ta được:
\(\dfrac{5}{9}m+\dfrac{26}{3}-2=0\)
=>5/9m=-20/3
hay m=-12
![](https://rs.olm.vn/images/avt/0.png?1311)
Do \(M\in d_3\) \(\Rightarrow M\left(2a;a\right)\)
\(\frac{\left|2a+a+3\right|}{\sqrt{1^2+1^2}}=2\frac{\left|2a-a-4\right|}{\sqrt{1^2+\left(-1\right)^2}}\Leftrightarrow\left|3a+3\right|=2\left|a-4\right|\)
\(\Leftrightarrow\left(3a+3\right)^2=4\left(a-4\right)^2\Leftrightarrow9a^2+18a+9=4a^2-32a+64\)
\(\Leftrightarrow5a^2+50a-55=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-11\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}M\left(2;1\right)\\M\left(-22;-11\right)\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi M là trung điểm OA \(\Rightarrow M\left(-\frac{1}{2};\frac{1}{2}\right)\)
\(\overrightarrow{AO}=\left(1;-1\right)\Rightarrow\) trung trực của OA nhận \(\left(1;-1\right)\) là 1 vtpt
Phương trình trung trực d' của OA:
\(1\left(x+\frac{1}{2}\right)-1\left(y-\frac{1}{2}\right)=0\Leftrightarrow x-y+1=0\)
Đường tròn qua O và A có tâm thuộc d', gọi tâm đường tròn là \(J\left(a;a+1\right)\)
Bán kính đường tròn bằng khoảng cách từ J đến d:
\(R=d\left(J;d\right)=\frac{\left|a-\left(a+1\right)+1-\sqrt{2}\right|}{\sqrt{1+1}}=1\)
\(\overrightarrow{OJ}=\left(a;a+1\right)\Rightarrow OJ=\sqrt{a^2+\left(a+1\right)^2}=\sqrt{2a^2+2a+1}\)
Mà \(OJ=R\Rightarrow2a^2+2a+1=1\)
\(\Leftrightarrow\left[{}\begin{matrix}a=0\\a=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}I\left(0;1\right)\\K\left(-1;0\right)\end{matrix}\right.\) \(\Rightarrow\overrightarrow{IK}=\left(-1;-1\right)\Rightarrow IK=\sqrt{2}\)
Đáp án D