\(\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y}=m\\x+y-\sqrt{xy}=m\end{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
26 tháng 7 2020

ĐKXĐ: ....

Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\ge0\\\sqrt{y}=b\ge0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=m\\a^2+b^2-ab=m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=m\\\left(a+b\right)^2-3ab=m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=m\\ab=\frac{m^2-m}{3}\end{matrix}\right.\)

Hệ đã cho có nghiệm khi và chỉ khi: \(t^2-m.t+\frac{m^2-m}{3}=0\) có 2 nghiệm ko âm

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=m^2-\frac{4}{3}\left(m^2-m\right)\ge0\\t_1+t_2=m\ge0\\t_1t_2=\frac{m^2-m}{3}\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4m-m^2\ge0\\m\ge0\\m\left(m-1\right)\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}0\le m\le4\\m\ge0\\\left[{}\begin{matrix}m\le0\\m\ge1\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}m=0\\1\le m\le4\end{matrix}\right.\)

NV
16 tháng 11 2019

Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\ge0\\\sqrt{y}=b\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=1\\a^3+b^3=1-3m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a+b=1\\\left(a+b\right)^3-3ab\left(a+b\right)=1-3m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=1\\ab=m\end{matrix}\right.\)

Để hệ đã cho có nghiệm

\(\Leftrightarrow\left\{{}\begin{matrix}1\ge4m\\1>0\\m\ge0\end{matrix}\right.\) \(\Rightarrow0\le m\le\frac{1}{4}\)

NV
26 tháng 7 2020

ĐKXĐ: ...

Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\ge0\\\sqrt{y-3}=b\ge0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a-b=m\\a^2-1+b^2+3=2\left(m+1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=b+m\\a^2+b^2=2m\end{matrix}\right.\)

\(\Rightarrow\left(b+m\right)^2+b^2=2m\)

\(\Leftrightarrow2b^2+2m.b+m^2-2m=0\) (1)

Hệ đã cho có nghiệm khi và chỉ khi (1) có ít nhất 1 nghiệm không âm

Để (1) có nghiệm \(\Leftrightarrow\Delta'=m^2-2\left(m^2-2m\right)\ge0\Rightarrow0\le m\le4\)

Để (1) có 2 nghiệm đều âm \(\Leftrightarrow\left\{{}\begin{matrix}b_1+b_2=-\frac{m}{2}< 0\\b_1b_2=\frac{m^2-2m}{2}>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\\left[{}\begin{matrix}m< 0\\m>2\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m>2\)

Vậy để hệ đã cho có nghiệm \(\Leftrightarrow0\le m\le2\)

NV
26 tháng 7 2020

ĐKXĐ: ...

Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\ge0\\\sqrt{y+1}=b\ge0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=3\\\left(a^2-1\right)b+\left(b^2-1\right)a+a+b=m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=3\\a^2b+ab^2=m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=3\\ab\left(a+b\right)=m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=3\\ab=\frac{m}{3}\end{matrix}\right.\)

Hệ đã cho có nghiệm khi và chỉ khi pt:

\(\left\{{}\begin{matrix}\frac{m}{3}\ge0\\\left(a+b\right)^2\ge4ab\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ge0\\9\ge\frac{4m}{3}\end{matrix}\right.\)

\(\Rightarrow0\le m\le\frac{27}{4}\)

5 tháng 2 2020

1.

\(\left\{{}\begin{matrix}x-2y-\sqrt{xy}=0\\\sqrt{x-1}-\sqrt{2y-1}=1\end{matrix}\right.\)

\(pt\left(1\right)\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-2\sqrt{y}\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}=-\sqrt{y}\\\sqrt{x}=\sqrt{2y}\end{matrix}\right.\)

cái đầu tiên loại vì x=y=0 không phải là nghiệm của hệ

suy ra x=2y thày vào pt(2) ta thấy 0 = 1 vô lý

vậy pt vô nghiệm

19 tháng 11 2019

Thử thôi chứ chả bt đúng hay sai

ĐKXĐ: \(\left\{{}\begin{matrix}x,y\ge2\\m\ge0\end{matrix}\right.\)

\(hpt\Leftrightarrow\left\{{}\begin{matrix}x+1+y-2+2\sqrt{\left(x+1\right)\left(y-2\right)}=m\\y+1+x-2+2\sqrt{\left(y+1\right)\left(x-2\right)}=m\end{matrix}\right.\)

Lấy trên trừ dưới

\(2\sqrt{\left(x+1\right)\left(y-2\right)}=2\sqrt{\left(y+1\right)\left(x-2\right)}\)

\(\Leftrightarrow\left(y+1\right)\left(x-2\right)=\left(x+1\right)\left(y-2\right)\)

\(\Leftrightarrow3x=3y\Leftrightarrow x=y\)

Vậy vs \(m\ge0\) pt có nghiệm thoả mãn đkxđ