Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hàm số $y=\sqrt{x-m+2}+\sqrt{x-2m+3}$ xác định khi và chỉ khi
\[\left\{\begin{aligned}&x-m+2\geq 0 \\&x-2m+3\geq
0\end{aligned}\right. \Leftrightarrow \left\{\begin{aligned}&x\geq m-2
\\&x\geq 2m-3.\end{aligned}\right. \tag{$*$}\]
- Khi $m-2\geq 2m-3$ hay $m\leq 1$ thì $(*)$ tương đương $x\geq m-2$. Do đó tập xác định của hàm số đã cho là $[m-2;+\infty)$.
Yêu cầu bài toán thỏa mãn khi và chỉ khi
\[(0;+\infty)\subset [m-2;+\infty) \Leftrightarrow \left\{\begin{aligned}&m\leq 1 \\&m-2\leq 0\end{aligned}\right. \Leftrightarrow \left\{\begin{aligned}&m\leq 1 \\&m\leq 2\end{aligned}\right. \Leftrightarrow m\leq 1.\] - Khi $m-2< 2m-3$ hay $m> 1$ thì $(*)$ tương đương $x\geq 2m-3$. Do đó tập xác định của hàm số đã cho là $[2m-3;+\infty)$.
Yêu cầu bài toán thỏa mãn khi và chỉ khi
\[(0;+\infty)\subset [2m-3;+\infty) \Leftrightarrow \left\{\begin{aligned}&m>1 \\&2m-3\leq 0\end{aligned}\right. \Leftrightarrow \left\{\begin{aligned}&m> 1 \\&m\leq \dfrac{3}{2}\end{aligned}\right. \Leftrightarrow 1<m\leq \dfrac{3}{2}.\]
Kết hợp hai trường hợp trên, ta được $m\leq \dfrac{3}{2}$ là các giá trị thỏa mãn yêu cầu bài toán.
ĐKXĐ: \(\hept{\begin{cases}x-m>0,\forall x\in\left(-1;0\right)\\-x+2m+6\ge0,\forall x\in\left(-1;0\right)\end{cases}\Leftrightarrow\hept{\begin{cases}x>m,\forall x\in\left(-1;0\right)\\2m+6\ge x,\forall x\in\left(-1;0\right)\end{cases}}}\)
+) \(m< x,\forall x\in\left(-1;0\right)\)thì \(m\)phải bé hơn GTNN của x trên đoạn (-1;0)
\(\Rightarrow m< -1\)
+) \(2m+6\ge x,\forall x\in\left(-1;0\right)\)thì 2m+6 phải lớn hơn GTLN của x trên đoạn (-1;0)
\(\Rightarrow2m+6\ge0\Leftrightarrow m\ge-3\)
Vậy \(-3\le m< -1\)thỏa đề.
Điều kiện để hàm số đã cho xác định là \(\hept{\begin{cases}x-m>0\\-x+2m+6\ge0\end{cases}\Leftrightarrow m< x\le2m+6}\)
Để hàm số có tập xác định \(D\ne\varnothing\)thì phải có m<2m+6 => m>-6 (*) Khi đó hàm số có tập xác định là (m;2m+6]
Hàm số xác định trên (-1;0) khi và chỉ khi (-1;0)\(\subset\)(m;2m+6], điều này tương đương với
\(\hept{\begin{cases}m\le-1\\2m+6\ge0\end{cases}\Leftrightarrow-3\le m\le-1}\)kết hợp với (*) ta được \(-3\le m\le-1\)
KL:
Để hàm số \(y=\sqrt{x^2-mx-2m+3}\) có tập xác định là R thì:
\(x^2-mx-2m+3\ge0\)
Ta có:\(\Delta_x=m^2-4\left(3-2m\right)\ge0\)
\(\Leftrightarrow m^2-8m-12\ge0\)
\(\Leftrightarrow\left(m^2-2\cdot4m+16\right)-28\ge0\)
\(\Leftrightarrow\left(m-4\right)^2\ge28\)
\(\Leftrightarrow-\sqrt{28}+4\le m\le\sqrt{28}+4\)
P/S:Số xấu,không chắc
ĐK: \(\sqrt{x-2m}-3\ne0\Leftrightarrow x-2m\ne9\Leftrightarrow x\ne9+2m\)
Hàm số xác đinh trên khoảng (3; 5)
<=> 2m + 9 \(\le\)3 hoặc 2m + 9 \(\ge\)5
<=> m \(\le\)-3 hoặc m \(\ge\)-2