Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
y'=1/3*3x^2(m-1)-(m-1)2x+1
=x^2(m-1)-x(2m-2)+1
Để hàm số đồng biến trên R thì y'>0 với mọi x
=>m-1<>0 và (2m-2)^2-4(m-1)>0
=>m<>1 và 4m^2-8m+4-4m+4>0
=>4m^2-12m+8>0 và m<>1
=>m^2-3m+2>0 và m<>1
=>m>2 hoặc m<1
Theo mình:
để hàm số đồng biến, đk cần là y'=0.
a>0 và \(\Delta'< 0\)
nghịch biến thì a<0
vì denta<0 thì hầm số cùng dấu với a
mình giải được câu a với b
câu c có hai cực trị thì a\(\ne\)0, y'=0, denta>0 (để hàm số có hai nghiệm pb)
câu d dùng viet
câu e mình chưa chắc lắm ^^
\(y'=mx^2-2\left(m-1\right)x+3\left(m-2\right)\)
\(y'\ge0\) ; \(\forall x\ge2\)
\(\Leftrightarrow mx^2-2\left(m-1\right)x+3\left(m-2\right)\ge0\) ; \(\forall x\ge2\)
\(\Leftrightarrow mx^2-2mx+3m\ge6-x\)
\(\Leftrightarrow m\left(x^2-2x+3\right)\ge6-x\)
\(\Leftrightarrow m\ge\dfrac{6-x}{x^2-2x+3}\)
\(\Rightarrow m\ge\max\limits_{x\ge2}\dfrac{6-x}{x^2-2x+3}=\dfrac{4}{3}\)
Vậy \(m\ge\dfrac{4}{3}\)
\(y'=3x^2-2\left(2m+1\right)x+m^2+2m=\left(x-m\right)\left(3x-m-2\right)\)
\(y'=0\Rightarrow\left[{}\begin{matrix}x=m\\x=\dfrac{m+2}{3}\end{matrix}\right.\)
TH1: \(m=\dfrac{m+2}{3}\Rightarrow m=1\) hàm đồng biến trên R (thỏa mãn)
TH2: \(m< \dfrac{m+2}{3}\Rightarrow m< 1\) hàm đồng biến trên khoảng đã cho khi \(\dfrac{m+2}{3}\le0\Rightarrow m\le-2\)
TH3: \(m>\dfrac{m+2}{3}\Rightarrow m>1\) hàm đồng biến trên khoảng đã cho khi \(m\le0\) (ktm)
Vậy \(\left[{}\begin{matrix}m=1\\m\le-2\end{matrix}\right.\)
Đây là hàm bậc 3 có \(a=\dfrac{1}{3}>0\) nên không bao giờ nghịch biến trên R
\(\Rightarrow\) Không tồn tại m thỏa mãn
\(y'=3x^2-4mx-m-1\)
Hàm đồng biến trên (0;2) khi \(\forall x\in\left(0;2\right)\) ta có:
\(y'\ge0\Leftrightarrow3x^2-4mx-m-1\ge0\)
\(\Leftrightarrow3x^2-1\ge m\left(4x+1\right)\) (1)
Do \(4x+1>0\) ; \(\forall x\in\left(0;2\right)\) nên (1) tương đương:
\(m\le\dfrac{3x^2-1}{4x+1}\Leftrightarrow m\le\min\limits_{\left(0;2\right)}\dfrac{3x^2-1}{4x+1}\)
Xét hàm \(f\left(x\right)=\dfrac{3x^2-1}{4x+1}\) trên \(\left(0;2\right)\)
\(f'\left(x\right)=\dfrac{12x^2+6x+4}{\left(4x+1\right)^2}>0\Rightarrow f\left(x\right)\) đồng biến
\(\Rightarrow f\left(x\right)>f\left(0\right)=-1\Rightarrow m\le-1\)
\(y'=3x^2-2\left(m+1\right)x-\left(2m^2-3m+2\right)\)
\(\Delta'=\left(m+1\right)^2+3\left(2m^2-3m+2\right)=7\left(m^2+m+1\right)>0\) ; \(\forall m\)
\(\Rightarrow y'=0\) luôn có 2 nghiệm phân biệt
Bài toán thỏa mãn khi: \(x_1< x_2\le2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1-2\right)\left(x_2-2\right)\ge0\\\dfrac{x_1+x_2}{2}< 2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2-2\left(x_1+x_2\right)+4\ge0\\x_1+x_2< 4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-\left(2m^2-3m+2\right)}{3}-\dfrac{4\left(m+1\right)}{3}+4\ge0\\\dfrac{2\left(m+1\right)}{3}< 4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-2m^2-m+6\ge0\\m< 5\end{matrix}\right.\) \(\Leftrightarrow-2\le m\le\dfrac{3}{2}\)
\(y'=x^2-2\left(m-1\right)x+2\left(m-1\right)\)
Hàm đồng biến trên R khi:
\(\Delta'=\left(m-1\right)^2-2\left(m-1\right)\le0\)
\(\Leftrightarrow\left(m-1\right)\left(m-3\right)\le0\)
\(\Rightarrow3\le m\le1\)