K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
29 tháng 5 2019

Để hàm số xác định \(\forall x\in R\Leftrightarrow sin^4x+cos^4x-2msinx.cosx\ge0\) \(\forall x\)

Ta có:

\(sin^4x+cos^4x-2msinx.cosx=\left(sin^2x+cos^2x\right)^2-2\left(sinx.cosx\right)^2-m.sin2x\)

\(=1-2\left(\frac{1}{2}sin2x\right)^2-msin2x=-\frac{1}{2}sin^22x-msin2x+1\)

Xét \(f\left(t\right)=-\frac{1}{2}t^2-mt+1\) với \(t\in\left[-1;1\right]\)

\(f\left(-1\right)=\frac{1}{2}+m\) ; \(f\left(1\right)=\frac{1}{2}-m\)

Để \(f\left(t\right)\ge0\) \(\forall t\in\left[-1;1\right]\Rightarrow\min\limits_{\left[-1;1\right]}f\left(t\right)\ge0\)

\(\Rightarrow\left\{{}\begin{matrix}f\left(-1\right)\ge0\\f\left(1\right)\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ge-\frac{1}{2}\\m\le\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow-\frac{1}{2}\le m\le\frac{1}{2}\)

30 tháng 8 2019

bạn ơi mình hỏi sao lại chỉ xét f(1) vs f(-1) vậy

 

NV
29 tháng 5 2019

Hàm số đương nhiên xác định với mọi x, hình như bạn ghi nhầm đề ở đâu đó

29 tháng 5 2019

uh sory mình đánh thiếu dấu cănleuleu

AH
Akai Haruma
Giáo viên
17 tháng 7 2019

Lời giải:

\(y=\cos ^4x+\sin ^4x=(\cos ^2x+\sin ^2x)^2-2\cos ^2x\sin ^2x\)

\(=1-2(\sin x\cos x)^2\leq 1\) do \((\sin x\cos x)^2\geq 0, \forall x\in\mathbb{R}\)

Do đó chọn đáp án B.

19 tháng 8 2023

1/ Để hàm số y = √cos^2(x) + cos(x) - 2m + 1 xác định trên R, ta cần điều kiện để biểu thức trong căn dương: cos^2(x) + cos(x ) - 2m + 1 > 0 Để giải phương trình này, ta sử dụng một số phép biến đổi: cos^2(x) + cos(x) - 2m + 1 = (cos(x) + 2)(cos(x) - m + 1) Điều kiện để biểu thức trên dương là: cos(x) + 2 > 0 và cos(x) - m + 1 > 0 Với cos(x) + 2 > 0, ta có -2 < cos( x) < 0 Với cos(x) - m + 1 > 0, ta có m - 1 < cos(x) < 1 Tổng Hàm, để hàm số y = √cos^2(x) + cos(x) - 2m + 1 xác định trên R, tham số m phải đáp ứng điều kiện -2 < cos(x) < 0 và m - 1 < cos(x) < 1. 2/ Để hàm số y = √cos^2(x) - 2cos(x) + m xác định trên R, ta cần điều kiện để biểu thức trong căn dương: cos^2(x) - 2cos(x) + m > 0 Đây là một phương trình bậc hai theo cos(x). Để giải phương trình này, ta sử dụng công thức delta: Δ = b^2 - 4ac Ở đây, a = 1, b = -2, c = m. Ta có: Δ = (-2)^2 - 4(1)(m) = 4 - 4m = 4(1 - m) Để phương trình có nghiệm thì Δ > 0. Tức là 1 - m > 0 hay m < 1. Tổng quát, để hàm số y = √cos^2(x) - 2cos(x) + m xác định trên R, tham số m phải đáp ứng m < 1. 3/ Để hàm số y = √sin^ 4 (x) + cos^4(x) - sin^2(x) - m xác định trên R, ta cần điều kiện để biểu thức trong căn dương: sin^4(x) + cos^4(x) - sin ^2(x) - m > 0 Đây cũng là một phương trình bậc hai theo sin(x). Ta sử dụng công thức delta as on, with a = 1, b = -1, c = -m. Δ = (-1)^2 - 4(1)(-m) = 1 + 4m = 4m + 1 Để phương trình có nghiệm thì Δ > 0. Tức là m > -1/4. Tổng quát, để hàm số y = √sin^4(x) + cos^4(x) - sin^2(x) - m xác định trên R, tham số m phải thỏa mãn m > -1/4.

TL
1 tháng 12 2019

Chứng minh các biểu thức đã cho không phụ thuộc vào x.

Từ đó suy ra f'(x)=0

a) f(x)=1⇒f′(x)=0f(x)=1⇒f′(x)=0 ;

b) f(x)=1⇒f′(x)=0f(x)=1⇒f′(x)=0 ;

c) f(x)=\(\frac{1}{4}\)(\(\sqrt{2}\)-\(\sqrt{6}\))=>f'(x)=0

d,f(x)=\(\frac{3}{2}\)=>f'(x)=0

NV
11 tháng 8 2020

2. ĐKXĐ:

a. \(\left\{{}\begin{matrix}cosx\ne0\\2-cosx+tan^2x\ge0\left(luôn-đúng\right)\end{matrix}\right.\)

\(\Rightarrow x\ne\frac{\pi}{2}+k\pi\)

(BPT dưới luôn đúng do \(\left\{{}\begin{matrix}tan^2x\ge0\\2-cosx>0\end{matrix}\right.\) với mọi x)

b. \(sin2x-sinx+3\ge0\)

\(\Leftrightarrow\left(sin2x+2\right)+\left(1-sinx\right)\ge0\)

Do \(\left\{{}\begin{matrix}sin2x\ge-1\\sinx\le1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}sin2x+2>0\\1-sinx\ge0\end{matrix}\right.\)

\(\Rightarrow\) BPT luôn thỏa mãn hay hàm số xác định trên R

NV
11 tháng 8 2020

1.

\(\Leftrightarrow f\left(x\right)=sin^4x+cos^4x-2m.sinx.cosx\ge0\) ;\(\forall x\in R\)

\(f\left(x\right)=\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x-2m.sinx.cosx\)

\(=-\frac{1}{2}sin^22x-m.sin2x+1\)

Đặt \(sin2x=t\Rightarrow\left|t\right|\le1\)

\(f\left(t\right)=-\frac{1}{2}t^2-mt+1\ge0\) ; \(\forall t\in\left[-1;1\right]\)

\(\Leftrightarrow\min\limits_{\left[-1;1\right]}f\left(t\right)\ge0\)

\(a=-\frac{1}{2}< 0\Rightarrow\min\limits f\left(t\right)\) xảy ra tại 1 trong 2 đầu mút

\(f\left(-1\right)=m+\frac{1}{2}\) ; \(f\left(1\right)=\frac{1}{2}-m\)

TH1: \(\left\{{}\begin{matrix}m+\frac{1}{2}\ge\frac{1}{2}-m\\\frac{1}{2}-m\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ge0\\m\le\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow0\le m\le\frac{1}{2}\)

TH2: \(\left\{{}\begin{matrix}\frac{1}{2}-m\ge m+\frac{1}{2}\\m+\frac{1}{2}\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\le0\\m\ge-\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow-\frac{1}{2}\le m\le\frac{1}{2}\)

NV
25 tháng 2 2020

\(\left\{{}\begin{matrix}\left|sinx\right|\le1\\\left|cosx\right|\le1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}sin^{4034}x\le sin^2x\\cos^{4038}x\le cos^2x\end{matrix}\right.\)

\(\Rightarrow sin^{4034}x+cos^{4038}x< sin^2x+cos^2x=1\) (dấu = ko xảy ra)

\(\Rightarrow\left|sin^{2017}x-cos^{2019}x\right|< \sqrt{\left(1+1\right)\left(sin^2x+cos^2x\right)}=\sqrt{2}\)

\(\Rightarrow sin^{2017}x-cos^{2019}x+\sqrt{2}>0\) \(\forall x\)

Vậy để hàm số xác định với mọi x trên đoạn đã cho

\(\Rightarrow m-sinx-cosx-2sinx.cosx\ge0\) \(\forall x\)

\(\Leftrightarrow sinx+cosx+2sinx.cosx\le m\)

Đặt \(sinx+cosx=t\Rightarrow2sinx.cosx=t^2-1\) \(\left(-1\le t\le\sqrt{2}\right)\)

\(\Rightarrow t^2+t-1\le m\Rightarrow m\ge\max\limits_{\left[-1;\sqrt{2}\right]}\left(t^2+t-1\right)=\sqrt{2}+1\)

Vậy \(m\ge\sqrt{2}+1\)

NV
25 tháng 2 2020

Sử dụng Bunhiacopxki thôi:

\(\left(sin^{2017}x-cos^{2019}x\right)^2\le\left(1+1\right)\left(sin^{4034}x+cos^{4038}x\right)< 2\left(sin^2x+cos^2x\right)=2\)

\(\Rightarrow-\sqrt{2}< sin^{2017}x-cos^{2019}x< \sqrt{2}\)

BĐT bên trái chuyển vế cho ta: \(sin^{2017}x-cos^{2019}x+\sqrt{2}>0\)

NM
23 tháng 8 2021

để hàm số xác định với mọi x thuộc R thì 

\(2m\cos^2x+\left(2-m\right)\cos x+4m-1\ge0\Leftrightarrow m\left(2cos^2x-cosx+4\right)\ge1-2cosx\)

mà \(2cos^2x-cosx+4>0\) nên :

\(m\ge\frac{1-2cosx}{2cos^2x-cosx+4}\)\(\Leftrightarrow\)\(m\ge max\left(\frac{1-2cosx}{2cos^2x-cosx+4}\right)=\frac{3}{7}\)

vậy điều kiện của m là : \(m\ge\frac{3}{7}\)