Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f(x) là parabol quay lên --> phải có nghiệm 0, 1
hệ số a=1
=> \(\Delta>0\Rightarrow m^2-m+3>0\)
=> đúng với mọi m
f(x) phải có nghiệm nằm ngoài [0,1]
f(x) pa ra pol quay lện
f(0) <=0=m-2 =0 => m<= 2
f(1) <=0=0=> 1-2(m-1) +m-2 =0 => 1-m<=0 => m>=1
Kết luận
\(1\le m\le2\)
\(a=1>0\) ; \(\Delta'=\left(m-2\right)^2-\left(m-2\right)=\left(m-2\right)\left(m-3\right)\)
a/ Để \(f\left(x\right)\le0\) \(\forall x\in\left(0;1\right)\)
\(\Leftrightarrow x_1\le0< 1\le x_2\)
\(\Leftrightarrow\left\{{}\begin{matrix}f\left(0\right)\le0\\f\left(1\right)\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m-2\le0\\1-\left(m-2\right)\le0\end{matrix}\right.\) \(\Rightarrow\) ko tồn tại m thỏa mãn
Do đó các câu c, f cũng không tồn tại m thỏa mãn
b/ TH1: \(\Delta< 0\Rightarrow2< m< 3\)
TH2: \(\left\{{}\begin{matrix}\Delta=0\\-\frac{b}{2a}\notin\left(0;1\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=2\\m=3\end{matrix}\right.\)
TH3: \(\left\{{}\begin{matrix}\Delta>0\\\left[{}\begin{matrix}0\le x_1< x_2\\x_1< x_2\le1\end{matrix}\right.\end{matrix}\right.\)
\(\Delta>0\Rightarrow\left[{}\begin{matrix}m>3\\m< 2\end{matrix}\right.\)
\(0\le x_1< x_2\Leftrightarrow\left\{{}\begin{matrix}f\left(0\right)\ge0\\\frac{x_1+x_2}{2}>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m-2\ge0\\m-2>0\end{matrix}\right.\) \(\Rightarrow m>2\) \(\Rightarrow m>3\)
\(x_1< x_2\le1\Leftrightarrow\left\{{}\begin{matrix}f\left(1\right)\ge0\\\frac{x_1+x_2}{2}< 1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3-m\ge0\\m-2< 1\end{matrix}\right.\) \(\Rightarrow\) ko tồn tại m
Kết hợp 3 TH \(\Rightarrow m\ge2\)
d/ Tương tự như câu b, nhưng
TH2: \(\left\{{}\begin{matrix}\Delta=0\\-\frac{b}{2a}\in\left[0;1\right]\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m thỏa mãn
TH3: \(\left\{{}\begin{matrix}\Delta>0\\\left[{}\begin{matrix}0< x_1< x_2\\x_1< x_2< 1\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow m>3\)
Kết hợp 3 TH \(\Rightarrow\left[{}\begin{matrix}2< m< 3\\m>3\end{matrix}\right.\)
e/
TH1: \(\Delta\le0\Rightarrow2\le m\le3\)
TH2: \(\left\{{}\begin{matrix}\Delta>0\\\left[{}\begin{matrix}0\le x_1< x_2\\x_1< x_2\le1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m>3\)
\(\Rightarrow m\ge2\)
Do \(a=-1< 0\) nên để điều kiện bài toán thỏa mãn thì:
\(\left\{{}\begin{matrix}\Delta'=\left(m-1\right)^2-2m+1>0\\x_1\le0< 1\le x_2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-f\left(0\right)\le0\\-f\left(1\right)\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}1-2m\le0\\0\le0\end{matrix}\right.\)
\(\Rightarrow m\ge\frac{1}{2}\)
cô ơi rk đề cho f(x)>0 mà khi thay (0;1) lai thành f(x)<= vậy ạ
Đặt \(f\left(x\right)=x^2-2mx+m^2-16\)
Bài toán tương đương tìm m để pt có 2 nghiệm pb thỏa mãn: \(x_1\le0< 1\le x_2\)
\(\Leftrightarrow\left\{{}\begin{matrix}f\left(0\right)\le0\\f\left(1\right)\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m^2-16\le0\\1-2m+m^2-16\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2-16\le0\\m^2-2m-15\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-4\le m\le4\\-3\le m\le5\end{matrix}\right.\) \(\Rightarrow-3\le m\le4\)
Ta có : \(\left\{{}\begin{matrix}a=1>0\\\Delta'=\left(m-1\right)^2-\left(m-2\right)=m^2-3m+3>0\end{matrix}\right.\)
Để \(f\left(x\right)\le0\forall x\in\left[0;1\right]\)
\(\Leftrightarrow x_1\le0< 1\le x_2\)
\(\Rightarrow\left\{{}\begin{matrix}f\left(0\right)\le0\\f\left(1\right)\le0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m-2\le0\\-m+1\le0\end{matrix}\right.\Rightarrow1\le m\le2\)
Vậy ...
a/ \(x^2-2x-3=-m\)
Đặt \(f\left(x\right)=x^2-2x-3\)
\(-\frac{b}{2a}=1\) ; \(f\left(1\right)=-4\) ; \(f\left(-1\right)=0\) ; \(f\left(3\right)=0\)
\(\Rightarrow\) Để pt có nghiệm trên khoảng đã cho thì \(-4\le-m\le0\Rightarrow0\le m\le4\)
b/ \(-x^2+2mx-m+1=0\)
\(\Delta'=m^2+m-1\ge0\Rightarrow\left[{}\begin{matrix}m\le\frac{-1-\sqrt{5}}{2}\\m\ge\frac{-1+\sqrt{5}}{2}\end{matrix}\right.\)
Để pt có 2 nghiệm đều âm
\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=2m< 0\\x_1x_2=m-1>0\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m thỏa mãn
Vậy pt luôn có ít nhất 1 nghiệm \(x\ge0\) với \(\left[{}\begin{matrix}m\le\frac{-1-\sqrt{5}}{2}\\m\ge\frac{-1+\sqrt{5}}{2}\end{matrix}\right.\)
c/ \(f\left(x\right)=2x^2-x-1=m\)
Xét hàm \(f\left(x\right)=2x^2-x-1\) trên \(\left[-2;1\right]\)
\(-\frac{b}{2a}=\frac{1}{4}\) ; \(f\left(\frac{1}{4}\right)=-\frac{9}{8}\) ; \(f\left(-2\right)=9\); \(f\left(1\right)=0\)
\(\Rightarrow\) Để pt có 2 nghiệm pb thuộc đoạn đã cho thì \(-\frac{9}{8}< m\le0\)
d/ \(f\left(x\right)=x^2-2x+1=m\)
Xét \(f\left(x\right)\) trên \((0;2]\)
\(-\frac{b}{2a}=1\) ; \(f\left(1\right)=0\) ; \(f\left(0\right)=1\); \(f\left(2\right)=1\)
Để pt có nghiệm duy nhất trên khoảng đã cho \(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=1\end{matrix}\right.\)
e/ ĐKXĐ: \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge-3\\x\le-4\end{matrix}\right.\\x\ge m\end{matrix}\right.\)
\(x^2+4x+3=x-m\)
\(\Leftrightarrow f\left(x\right)=x^2+3x+3=-m\)
Xét hàm \(f\left(x\right)\)
\(-\frac{b}{2a}=-\frac{3}{2}\) ; \(f\left(-\frac{3}{2}\right)=\frac{3}{4}\); \(f\left(-3\right)=3\); \(f\left(-4\right)=7\)
Để pt có 2 nghiệm thỏa mãn \(x\notin\left(-4;-3\right)\) thì \(\left[{}\begin{matrix}\frac{3}{4}< m\le3\\m\ge7\end{matrix}\right.\) (1)
Mặt khác \(x^2+3x+m+3=0\)
Để pt có 2 nghiệm thỏa mãn \(m\le x_1< x_2\) thì:
\(\left\{{}\begin{matrix}f\left(m\right)\ge0\\x_1+x_2>2m\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m^2+4m+3\ge0\\2m< -3\end{matrix}\right.\) \(\Rightarrow m\le-3\) (2)
Từ (1) và (2) suy ra ko tồn tại m thỏa mãn
\(\Delta'=\left(m-2\right)^2-\left(m-2\right)=\left(m-2\right)\left(m-3\right)\)
m thuôc (2;3) luôn sai
m thuộc (-vc;2]U[3;vc)
\(x_1=m-2-\sqrt{m^2-5m+6};x_2=m-2+\sqrt{m^2-5m+6}\)
\(\dfrac{-b}{2a}=\left(m-2\right)\)
m-2 <= 0 <=> m<=2 cần f(1) <=0<=> 1-2(m-2) +(m-2) <=0
<=>(m-2) >=1 => loại
m-2>=1 <=> m>=3
cần f(0) <=0<=> (m-2) <=0 => loại
kết luận vô nghiệm m
bổ sung đề
với f không giảm
tính f\(\left(\frac{1}{n}\right)\) với n∈\(\left\{1;2;3;....;20\right\}\)
\(a=1>0;\) \(\Delta'=\left(m-1\right)^2-m+2=m^2-3m+3=\left(m-\frac{3}{2}\right)^2+\frac{3}{4}>0\) ;\(\forall m\)
Để BPT thỏa mãn với \(\forall x\in\left[0;1\right]\Leftrightarrow x_1\le0< 1\le x_2\)
Đặt \(f\left(x\right)=x^2-2\left(m-1\right)x+m-2\)
\(\Rightarrow\left\{{}\begin{matrix}f\left(0\right)\le0\\f\left(1\right)\le0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m-2\le0\\1-m\le0\end{matrix}\right.\)
\(\Rightarrow1\le m\le2\)