\(A\left(2;-3\right)\) thuộc đường thẳng \(\left(m-1\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

D
datcoder
CTVVIP
4 tháng 10 2023

A(2;-3) => x = 2; y = -3

Thay x = 2 và y = -3 ta có:

\(\left(m-1\right).2+\left(m+1\right).\left(-3\right)=2m+1\\ \Leftrightarrow2m-2-3m-3=2m+1\\ \Leftrightarrow-m-5=2m+1\\ \Leftrightarrow3m=6\\ \Leftrightarrow m=2\)

Vậy m = 2

a: Thay x=1 và y=0 vào mx-5y=7, ta được:

m-0=7

hay m=7

b: Thay x=0 và y=-3 vào 2,5x+my=-21, ta được:

-3m=-21

hay m=7

c: Thay x=5 và y=-3 vào (d), ta được:

\(5m-6=-1\)

=>5m=5

hay m=1

d: Thay x=5 và y=-3 vào (D), ta được:

\(15+3m=6\)

=>3m=-9

hay m=-3 

e: Thay x=0,5 và y=-3 vào (d1), ta được:

0,5m=17,5

hay m=35

B1: Cho pt \(x^2-2\left(m-1\right)x+2m-5=0\)(1)a. Tìm m để (1) có 2 nghiệm dương b. Gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm m để A=\(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2\)nhận GT nguyênB2: cho pt \(x^2-2\left(m-1\right)x+2m-3=0\)(1)a. Tìm m để (1) có 2 nghiệm trái dấub. Tìm m để nghiệm này bằng bình phương nghiệm kiaB3: cho pt \(x^2-\left(3m+1\right)x+2m^2+m-1=0\)(1)a. cmr pt (1) luôn có 2 nghiệm phân...
Đọc tiếp

B1: Cho pt \(x^2-2\left(m-1\right)x+2m-5=0\)(1)

a. Tìm m để (1) có 2 nghiệm dương 

b. Gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm m để A=\(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2\)nhận GT nguyên

B2: cho pt \(x^2-2\left(m-1\right)x+2m-3=0\)(1)

a. Tìm m để (1) có 2 nghiệm trái dấu

b. Tìm m để nghiệm này bằng bình phương nghiệm kia

B3: cho pt \(x^2-\left(3m+1\right)x+2m^2+m-1=0\)(1)

a. cmr pt (1) luôn có 2 nghiệm phân biệt \(\forall m\)

b. Tìm m để A=\(x_1^2+x_2^2-3x_1x_2\)đạt GTLN

B4: Cho pt \(x^2+\left(2m+3\right)x+3m+11=0\). Tìm m để pt có 2 nghiệm \(x_1,x_2\ne0\)thỏa mãn \(|\frac{1}{x_1}-\frac{1}{x_2}|=\frac{1}{2}\)

B5: cho 2 đường thẳng \(\left(d_1\right):y=\left(m-1\right)x-m^2-m\)và \(\left(d_2\right):y=\left(m-2\right)x-m^2-2m+1\)

a. Xđ tọa độ giao điểm của \(d_1\)và \(d_2\)(điểm G)

b. cmr điểm G thuộc 1 đường thẳng cố định khi m thay đổi

B6: cho pt \(2x^2-4mx+2m^2-1=0\)(1)

a. cmr pt (1) luôn có 2 nghiệm phân biệt \(\forall m\)

b. tìm m để pt (1) có 2 nghiệm thỏa mãn \(2x_1^2+4mx_2+2m^2-1>0\)

B7: cho pt \(x^2-2mx-16+5m^2=0\)(1)

a. tìm m để (1) có nghiệm

b. gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm GTLN và GTNN của biểu thức A=\(x_1\left(5x_1+3x_2-17\right)+x_2\left(5x_2+3x_1-17\right)\)

0
16 tháng 10 2021

Để d1 // d2 khi \(\hept{\begin{cases}m^2-1=5-m\\m+2\ne2m+5\end{cases}}\Leftrightarrow\hept{\begin{cases}m^2+m-6=0\\m\ne-3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}m=2;m=-3\\m\ne-3\end{cases}}\Leftrightarrow m=2\)

bạn thử tải app này xem có đáp án không nhé <3 https://giaingay.com.vn/downapp.html

NV
21 tháng 6 2019

\(2x^2-mx-2m=0\)

a/ \(\Delta=m^2+16m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=-16\end{matrix}\right.\)

b/ Gọi \(d_1:\) \(y=4x+b\)

\(A\left(a;a+7\right)\Rightarrow a+7=2a+4\Rightarrow a=3\Rightarrow A\left(3;10\right)\)

\(\Rightarrow10=4.3+b\Rightarrow b=-2\Rightarrow d_1:\) \(y=4x-2\)

\(\left\{{}\begin{matrix}y=mx+2m\\y=4x-2\end{matrix}\right.\)

- Nếu \(\Rightarrow\left(m-4\right)x+2m+2=0\Rightarrow x=\frac{-2m-2}{m-4}\Rightarrow y=\frac{-10m}{m-4}\)

Tự thay 2 giá trị m ở câu a vào để tính ra tọa độ cụ thể

c/ Với\(k\ne2l\ne4\Rightarrow\left\{{}\begin{matrix}k\ne4\\l\ne2\end{matrix}\right.\)

\(\left\{{}\begin{matrix}y=kx+2k+1\\y=4x-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\frac{-2k-3}{k-4}\\y=\frac{-10k-4}{k-4}\end{matrix}\right.\)

\(\left\{{}\begin{matrix}y=2lx+l-2\\y=4x-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\frac{-l}{2l-4}\\y=\frac{-4l+4}{l-2}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{-2k-3}{k-4}=\frac{-l}{2l-4}\\\frac{-10k-4}{k-4}=\frac{-4l+4}{l-2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}k=...\\l=...\end{matrix}\right.\)

11 tháng 9 2016

a/ Gọi điểm cố định là N(x0;y0)

Suy ra N thuộc đồ thị hàm số y = (m-2)x+3 nên : 

\(y_0=\left(m-2\right)x_0+3\Leftrightarrow mx_0-\left(2x_0+y_0-3\right)=0\)

Vì đths luôn đi qua N với mọi x,y nên : 

\(\begin{cases}x_0=0\\2x_0+y_0-3=0\end{cases}\) \(\Leftrightarrow\begin{cases}x_0=0\\y_0=3\end{cases}\)

Vậy điểm cố định là \(N\left(0;3\right)\)

b,c tương tự

 

 

14 tháng 9 2016

Toán lớp 9Toán lớp 9

31 tháng 10 2022

b: Để hai đường song song thì m^2-1=1 và -m^2+3=5

=>m^2=2 và -m^2=2

=>\(m=\pm\sqrt{2}\)

c: Vì (d2) vuông góc với (d3)

và (d1)//(d2)

nên (d1) vuông góc với (d3)

3 tháng 11 2016

a/ Để hàm số này là hàm bậc nhất thì

\(\hept{\begin{cases}\left(3n-1\right)\left(2m+3\right)=0\\4m+3\ne0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}n=\frac{1}{3}\\m=\frac{-3}{2}\end{cases}}\)

Các câu còn lại làm tương tự nhé bạn

3 tháng 11 2016

NHAMMATTAOCUNGLAMDUOC

3 tháng 8 2017

a. Gọi \(A\left(x_0;y_o\right)\) là điểm cố định mà \(\Delta\)đi qua

Ta có phương trinh hoành độ giao điểm \(\left(m-3\right)x_o-\left(m-2\right)y_0+m-1=0\)

\(\Leftrightarrow mx_0-my_0+m-\left(3x_0-2y_0+1\right)=0\Leftrightarrow m\left(x_0-y_0+1\right)-\left(3x_0-2y_0+1\right)=0\)

Vì đẳng thức đúng với mọi m nên \(\hept{\begin{cases}x_0-y_0+1=0\\3x_0-2y_0-1=0\end{cases}\Rightarrow\hept{\begin{cases}x_0=3\\y_0=4\end{cases}\Rightarrow}A\left(3;4\right)}\)

Vậy \(\Delta\)luôn đi qua điểm \(A\left(3;4\right)\)cố định 

b. Ta có \(\left(m-2\right)y=\left(m-3\right)x+m-1\)

Để \(\Delta\)song song với Ox thì \(\hept{\begin{cases}m-2\ne0\\m-3=0\end{cases}\Rightarrow m=3}\)

Để \(\Delta\)song song với Oy thì \(\hept{\begin{cases}m-2=0\\m-3\ne0\end{cases}\Rightarrow m=2}\)

Để \(\Delta\)song song với đt \(y=x\)\(\Rightarrow\hept{\begin{cases}m-2=1\\m-3=1\end{cases}\Rightarrow\hept{\begin{cases}m=3\\m=4\end{cases}\left(l\right)}}\)

Vậy không tồn tại m để \(\Delta\)song song với đt \(y=x\)