K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2018

mk giải 1 bài lm mẩu nha .

+) ta có : \(A=x-12\sqrt{x}\Leftrightarrow x-12\sqrt{x}-A=0\)

vì phương trình này luôn có nghiệm \(\Leftrightarrow\Delta'\ge0\)

\(\Leftrightarrow6^2+A\ge0\Leftrightarrow A\ge-36\)

vậy giá trị nhỏ nhất của \(A\)\(-36\) dấu "=" xảy ra khi \(\sqrt{x}=\dfrac{-b'}{a}=\dfrac{6}{1}=6\Leftrightarrow x=36\)

mấy câu còn lại bn chuyển quế đưa về phương trình bật 2 theo \(x\) rồi giải như trên là đc :

30 tháng 7 2018

lộn ! là phương trình bật 2 đối với ẩn là \(\sqrt{x}\) nha :

DƯƠNG PHAN KHÁNH DƯƠNG

27 tháng 12 2018

 1) vì pt có 1 nghiệm x = 2 nên

\(2^2-2\left(m+1\right).2+m-4=0\)

\(\Leftrightarrow4-4m-4+m-4=0\)

\(\Leftrightarrow-3m=4\)

\(\Leftrightarrow m=-\frac{4}{3}\)

Thay \(m=-\frac{4}{3}\)vào pt đã cho ta đc

\(x^2-2\left(-\frac{4}{3}+1\right)x-\frac{4}{3}-4=0\)

\(\Leftrightarrow x^2+\frac{2x}{3}-\frac{16}{3}=0\)

\(\Leftrightarrow3x^2+2x-16=0\)

\(\Leftrightarrow\left(x-2\right)\left(3x+8\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-\frac{8}{3}\end{cases}}\)

 Vậy nghiệm còn lại của pt là \(x=-\frac{8}{3}\)

2) Có \(\Delta'=\left(m+1\right)^2-m+4\)

               \(=m^2+2m+1-m+4\)

                \(=m^2+m+5\)

                  \(=\left(m+\frac{1}{2}\right)^2+\frac{19}{4}>0\forall m\)

=> Pt luôn có 2 nghiệm phân biệt với mọi m

3) Theo hệ thức Vi-et có

\(x_1+x_2=\frac{-b}{a}=\frac{2\left(m+1\right)}{1}=2m+2\)

\(x_1.x_2=\frac{c}{a}=\frac{m-4}{1}=m-4\)

         a,Ta có: \(A=x_1\left(1-x_2\right)+x_2\left(1-x_1\right)\)

                          \(=x_1-x_1x_2+x_2-x_1x_2\) 

                          \(=\left(x_1+x_2\right)-2x_1x_2\)

                           \(=2m+2-2\left(m-4\right)\)

                          \(=2m+2-2m+8\)

                          \(=10\)ko phụ thuộc vào giá trị của m

      b, Từ \(\hept{\begin{cases}x_1+x_2=2m+2\left(1\right)\\x_1+2x_2=3\end{cases}}\)

        \(\Rightarrow\left(x_1+2x_2\right)-\left(x_1+x_2\right)=1-2m\) 

       \(\Rightarrow x_2=1-2m\)

Thế vào (1) ta đc \(x_1+1-2m=2m+2\)

                       \(\Leftrightarrow x_1=4m+1\)

Lại có: \(x_1x_2=m-4\)

\(\Leftrightarrow\left(4m+1\right)\left(1-2m\right)=m-4\)

\(\Leftrightarrow4m-8m^2+1-2m=m-4\)

\(\Leftrightarrow8m^2-m-5=0\)

\(\Delta=1-4.8.\left(-5\right)=161>0\)

Nên pt có 2 nghiệm phân biệt

\(m_1=\frac{1-\sqrt{161}}{16}\)

\(m_2=\frac{1+\sqrt{161}}{16}\)

            c, \(x_1+x_2\ge10x_1x_2+6m-5\)

      \(\Leftrightarrow2m+2\ge10\left(m-4\right)+6m-5\)

      \(\Leftrightarrow2m+2\ge10m-40+6m-5\)

     \(\Leftrightarrow47\ge14m\)

     \(\Leftrightarrow m\le\frac{47}{14}\)

Vậy ............

AH
Akai Haruma
Giáo viên
13 tháng 5 2021

Lời giải:

\(S-m=\frac{x+\sqrt{x}(1-3m)+m}{3\sqrt{x}-1}\)

Để $S-m=0$ có nghiệm thì PT $x+\sqrt{x}(1-3m)+m=0$ có nghiệm không âm và khác $\frac{1}{9}$

Điều này xảy ra khi:

\(\left\{\begin{matrix} \Delta=(1-3m)^2-4m\geq 0\\ \frac{1}{9}+\frac{1}{3}(1-3m)+m\neq 0\\ S=1-3m\geq 0\\ P=m\geq 0\end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} (m-1)(9m-1)\geq 0\\ 1-3m\geq 0\\ m\geq 0\end{matrix}\right.\left\{\begin{matrix} m\leq \frac{1}{9}\\ m\geq 0\end{matrix}\right.\)

13 tháng 5 2021

C hỗ trợ em bài tập em gửi vào inb nhé !

AH
Akai Haruma
Giáo viên
24 tháng 7 2021

Đề bài khó hiểu quá. Bạn cần viết lại đề để được hỗ trợ tốt hơn.

Để \(P\ge1\) thì \(P-1\ge0\)

\(\Leftrightarrow\dfrac{2\sqrt{x}-1-\sqrt{x}+1}{\sqrt{x}-1}\ge0\)

\(\Leftrightarrow\dfrac{\sqrt{x}}{\sqrt{x}-1}\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-1>0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x>1\end{matrix}\right.\)

Kết hợp ĐKXĐ, ta được: x=0 hoặc x>1

 

14 tháng 12 2021

\(M=\dfrac{3}{2}\cdot4\sqrt{2x}-\dfrac{1}{3}\cdot3\sqrt{2x}+\dfrac{2}{5}\cdot5\sqrt{2x}-4\sqrt{2x}=6\sqrt{2x}-\sqrt{2x}+2\sqrt{2x}-4\sqrt{2x}=3\sqrt{2x}\)

14 tháng 12 2021

mk cảm ơn nha

2 tháng 6 2021

\(M=3\left(\sqrt{x}+1\right)^2-\left(\sqrt{x}+4\right)^2+14\)

\(=3\left(x+2\sqrt{x}+1\right)-\left(x+8\sqrt{x}+16\right)+14\)

\(=3x+6\sqrt{x}+3-x-8\sqrt{x}-16+14\)

\(=2x-2\sqrt{x}+1\)

\(=2\left(x-4\sqrt{x}+4\right)+6\sqrt{x}-7\)

\(=2\left(\sqrt{x}-2\right)^2+6\sqrt{x}-7\ge2.0+6.\sqrt{4}-7=5\)

Dấu "=" \(x=4\)

Vậy GTNN của M là 4 <=> x = 4

4 tháng 6 2021

\(\left\{{}\begin{matrix}xz=x+4\left(1\right)\\2y^2=7xz-3x-14\\x^2+y^2=35-z^2\left(3\right)\end{matrix}\right.\left(2\right)\)

Nhận thấy \(x=0\) không là nghiệm của (1) . 

\(\rightarrow z=\dfrac{x+4}{x}\)(4)

Thế (1) vào (2) . 

\(2y^2=7\left(x+4\right)-3x-14=4x+14\leftrightarrow y^2=2x+7\)(\(x\ge-\dfrac{7}{2}\)) (5)

Thế (4)(5) vào (3) 

\(x^2+2x+7=35-\left(\dfrac{x+4}{x}\right)^2\)

\(\Leftrightarrow x^4+2x^3-27x^2+8x+16=0\)

\(\Leftrightarrow\left(x-4\right)\left(x-1\right)\left(x^2+7x+4\right)=0\)\(\)

TH1 : \(x-4=0\Leftrightarrow x=4\Leftrightarrow\left\{{}\begin{matrix}y=\pm\sqrt{15}\\z=2\end{matrix}\right.\)

TH2 : \(x-1=0\Leftrightarrow x=1\Leftrightarrow\left\{{}\begin{matrix}y=\pm3\\z=5\end{matrix}\right.\)

TH3 : \(x^2+7x+4=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-7+\sqrt{33}}{2}\left(TM\right)\\x=\dfrac{-7-\sqrt{33}}{2}\left(KTM\right)\end{matrix}\right.\)

\(\Leftrightarrow x=\dfrac{-7+\sqrt{33}}{2}\Leftrightarrow\left\{{}\begin{matrix}y=\pm\sqrt[4]{33}\\z=-\dfrac{5+\sqrt{33}}{2}\end{matrix}\right.\)