\(\left(m+1\right)x^{^2}-2mx+2m>0\forall x\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

TH1: m=-1

=>x-2>0

=>x>2(loại)

TH2: m<>-1

Δ=(-2m)^2-4*2m*(m+1)

=4m^2-8m^2-8m

=-4m^2-8m

Để BPT luôn có nghiệm thì -4m^2-8m<0 và m+1>0

=>4m^2+8m>0 và m>-1

=>4m(m+2)>0 và m>-1

=>m>0

NV
6 tháng 5 2019

Đặt \(f\left(x\right)=x^2-2mx+m^2-16\)

Bài toán tương đương tìm m để pt có 2 nghiệm pb thỏa mãn: \(x_1\le0< 1\le x_2\)

\(\Leftrightarrow\left\{{}\begin{matrix}f\left(0\right)\le0\\f\left(1\right)\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m^2-16\le0\\1-2m+m^2-16\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-16\le0\\m^2-2m-15\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-4\le m\le4\\-3\le m\le5\end{matrix}\right.\) \(\Rightarrow-3\le m\le4\)

12 tháng 3 2020

\(f\left(x\right)=x^2-2mx+m^2-3m+2\)

\(\Leftrightarrow f\left(x\right)=\left(x-m\right)^2-3m+2\)

Ta có : \(\left(x-m\right)^2\ge0\)

Để \(f\left(x\right)>0\)

\(\Leftrightarrow-3m+2>0\)

\(\Leftrightarrow m>-\frac{2}{3}\)

Vậy để \(f\left(x\right)>0\forall x\inℝ\Leftrightarrow m>-\frac{2}{3}\)

P/s : K biết có sai chỗ nào k ạ ? Check hộ e :)

12 tháng 3 2020

Bài vừa rồi mik làm sai nhé :(( Làm lại :

\(f\left(x\right)=x^2-2mx+m^2-3m+2\)

\(\Leftrightarrow f\left(x\right)=\left(x-m\right)^2-3m+2\)

Ta thấy : \(\left(x-m\right)^2\ge0\)

Để \(f\left(x\right)>0\)

\(\Leftrightarrow-3m+2>0\)

\(\Leftrightarrow2>3m\)

\(\Leftrightarrow m< \frac{2}{3}\)

Vậy để \(f\left(x\right)>0\forall x\inℝ\Leftrightarrow m< \frac{2}{3}\)

NV
29 tháng 2 2020

a/ Để BPT vô nghiệm

\(\Leftrightarrow\left\{{}\begin{matrix}m+2>0\\\Delta'=m^2-3m\left(m+2\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>-2\\m^2+3m>0\end{matrix}\right.\) \(\Rightarrow m>0\)

b/ Để BPT vô nghiệm

\(\Leftrightarrow\left\{{}\begin{matrix}m+2< 0\\\Delta'\le0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< -2\\m^2+3m\ge0\end{matrix}\right.\) \(\Rightarrow m\le-3\)

Vậy để BPT có nghiệm thì \(m>-3\)

11 tháng 4 2020

a/ \(2x^3+x+3>0\Leftrightarrow\left(x+1\right)\left(x^2-2x+3\right)>0\Leftrightarrow x+1>0\) \(\left(x^2-2x+3>0\forall x\in R\right)\)

\(\Leftrightarrow x>-1\)

Nghiệm của $VT(*)$ là $S=(-1;+\infty)$

b/ \(x^2\left(x^2+3x-4\right)\ge0\) $(*)$

$VT(*) có nghiệm kép là $0$ và nghiệm đơn là $1;-4$. Ta có BXD:

- + -4 0 1 + - - + 0 0 0 x VT(*)

Từ BXD suy ra bất phương trình có tập nghiệm $S={0} \cup (-\infty;-4] \cup [1;+\infty)$

11 tháng 4 2020

Khách? Khi mà

12 tháng 3 2020

\(f\left(x\right)=x^2-2mx+m^2-3m+2>0\forall x\in R\)

\(\Leftrightarrow\left\{{}\begin{matrix}a>0\\\Delta'< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}1>0\left(lđ\right)\\\left(-m\right)^2-m^2+3m-2< 0\end{matrix}\right.\)

\(\Leftrightarrow3m-2< 0\Leftrightarrow m< \frac{2}{3}\)