Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(f\left(x\right)=x^2-2mx+m^2-16\)
Bài toán tương đương tìm m để pt có 2 nghiệm pb thỏa mãn: \(x_1\le0< 1\le x_2\)
\(\Leftrightarrow\left\{{}\begin{matrix}f\left(0\right)\le0\\f\left(1\right)\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m^2-16\le0\\1-2m+m^2-16\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2-16\le0\\m^2-2m-15\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-4\le m\le4\\-3\le m\le5\end{matrix}\right.\) \(\Rightarrow-3\le m\le4\)
\(f\left(x\right)=x^2-2mx+m^2-3m+2\)
\(\Leftrightarrow f\left(x\right)=\left(x-m\right)^2-3m+2\)
Ta có : \(\left(x-m\right)^2\ge0\)
Để \(f\left(x\right)>0\)
\(\Leftrightarrow-3m+2>0\)
\(\Leftrightarrow m>-\frac{2}{3}\)
Vậy để \(f\left(x\right)>0\forall x\inℝ\Leftrightarrow m>-\frac{2}{3}\)
P/s : K biết có sai chỗ nào k ạ ? Check hộ e :)
Bài vừa rồi mik làm sai nhé :(( Làm lại :
\(f\left(x\right)=x^2-2mx+m^2-3m+2\)
\(\Leftrightarrow f\left(x\right)=\left(x-m\right)^2-3m+2\)
Ta thấy : \(\left(x-m\right)^2\ge0\)
Để \(f\left(x\right)>0\)
\(\Leftrightarrow-3m+2>0\)
\(\Leftrightarrow2>3m\)
\(\Leftrightarrow m< \frac{2}{3}\)
Vậy để \(f\left(x\right)>0\forall x\inℝ\Leftrightarrow m< \frac{2}{3}\)
a/ Để BPT vô nghiệm
\(\Leftrightarrow\left\{{}\begin{matrix}m+2>0\\\Delta'=m^2-3m\left(m+2\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>-2\\m^2+3m>0\end{matrix}\right.\) \(\Rightarrow m>0\)
b/ Để BPT vô nghiệm
\(\Leftrightarrow\left\{{}\begin{matrix}m+2< 0\\\Delta'\le0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< -2\\m^2+3m\ge0\end{matrix}\right.\) \(\Rightarrow m\le-3\)
Vậy để BPT có nghiệm thì \(m>-3\)
a/ \(2x^3+x+3>0\Leftrightarrow\left(x+1\right)\left(x^2-2x+3\right)>0\Leftrightarrow x+1>0\) \(\left(x^2-2x+3>0\forall x\in R\right)\)
\(\Leftrightarrow x>-1\)
Nghiệm của $VT(*)$ là $S=(-1;+\infty)$
b/ \(x^2\left(x^2+3x-4\right)\ge0\) $(*)$
$VT(*) có nghiệm kép là $0$ và nghiệm đơn là $1;-4$. Ta có BXD:
- + -4 0 1 + - - + 0 0 0 x VT(*)
Từ BXD suy ra bất phương trình có tập nghiệm $S={0} \cup (-\infty;-4] \cup [1;+\infty)$
\(f\left(x\right)=x^2-2mx+m^2-3m+2>0\forall x\in R\)
\(\Leftrightarrow\left\{{}\begin{matrix}a>0\\\Delta'< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}1>0\left(lđ\right)\\\left(-m\right)^2-m^2+3m-2< 0\end{matrix}\right.\)
\(\Leftrightarrow3m-2< 0\Leftrightarrow m< \frac{2}{3}\)
TH1: m=-1
=>x-2>0
=>x>2(loại)
TH2: m<>-1
Δ=(-2m)^2-4*2m*(m+1)
=4m^2-8m^2-8m
=-4m^2-8m
Để BPT luôn có nghiệm thì -4m^2-8m<0 và m+1>0
=>4m^2+8m>0 và m>-1
=>4m(m+2)>0 và m>-1
=>m>0