Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5\left(x+2\right)-x^2-2x=0\)
\(\Rightarrow5\left(x+2\right)-\left(x^2+2x\right)=0\)
\(\Rightarrow5\left(x+2\right)-x\left(x+2\right)=0\)
\(\Rightarrow\left(5-x\right)\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}5-x=0\\x+2=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=5\\x=-2\end{cases}}\)
Xét phương trình :
\(\left(m-1\right)x+m-5=0\)
Ta có : phương trình nhận \(x=-2\) làm nghiệm
\(\Leftrightarrow-2\left(m-1\right)+m-5=0\)
\(\Leftrightarrow-m-3=0\)
\(\Leftrightarrow m=-3\)
Vậy...
Cho phương trình: \(x^2-2mx-m^2-5=0\)(*)
1. Biết phương trình có nghiệm là 3,tìm m và nghiệm còn lại.
Mk làm cách dễ vô cùng nhá
Xét phương trình : \(\(\(x^2-2mx-m^2-5=0\)\)\)(*)
Vì 3 là một nghiệm của phương trình nên thay vào ta được :
\(\(\(3^2-2.m.3-m^2-5=0\)\)\)
\(\(\(\Leftrightarrow9-6m-m^2-5=0\)\)\)
\(\(\(\Leftrightarrow-m^2-6m+4=0\)\)\)
\(\(\(\Leftrightarrow m^2+6m-4=0\)\)\)
Ta có \(\(\(\Delta^/=\left(3\right)^2-1.\left(-4\right)\)\)\)
\(\(\(=9+4=13\Rightarrow\sqrt{\Delta^/}=\sqrt{13}\)\)\)
\(\(\(\Rightarrow m_1=-3+\sqrt{13};m_2=-3-\sqrt{13}\)\)\)
Với \(\(\(m=-3+\sqrt{13}\Rightarrow x_1=3;x_2=-9+2\sqrt{13}\)\)\)
Với \(\(m=-3-\sqrt{13}\Rightarrow x_1=3;x_2=-9-2\sqrt{13}\)\)
K biết sai chỗ nào không ... bn xem lại nhá
umk umk xin lỗi các bạn. Nhìn nhầm thành phương trình có 3 nghiệm :)
\(x^3\left(2x-1\right)^{m+2}:x^3\left(2x-1\right)^{m-1}-3^5:3^2=0\)
\(x^3\left(2x-1\right)^{m+2-m+1}-3^{5-2}=0\)
\(x^3\left(2x-1\right)^3-3^3=0\)
\(\left[x\left(2x-1\right)\right]^3-3^3=0\)
\(\left[x\left(2x-1\right)-3\right]\left[\left(2x^2-x\right)^2+6x^2-3x+9\right]=0\)
con lai ban tu lam nha
day la hang dang thuc hieu hai lap phuong
ban cu ap dung cong thuc ma lam
\(x^3\left(2x-1\right)^{m+2}:x^3\left(2x-1\right)^{m-1}-3^5:3^2=0\)
\(x^3\left(2x-1\right)^{m+2-m+1}-3^{5-2}=0\)
\(x^3\left(2x-1\right)^3-3^2=0\)
\(\left[x\left(2x-1\right)\right]^3-3^2=0\)
\(\left(2x^2-x\right)^3-3^2=0\)
\(\left(2x^2-x\right)\left[\left(2x^2-x\right)^2-3^2\right]=0\)
\(\left(2x^2-x\right)\left(2x^2-x-3\right)\left(2x^2-x+3\right)=0\)
\(\)
\(M=4x^2-9-2x-10-2\left(x^2+x-2\right)\)
\(=4x^2-2x-19-2x^2-2x+4\)
\(=2x^2-4x-15\)
Khi x=0 thì M=-15
\(M^3+M^2-2M=0\)
\(\Leftrightarrow M\left(M^2+M-2\right)=0\)
\(\Leftrightarrow M\left(M^2-M+2M-2\right)=0\)
\(\Leftrightarrow M\left(M-1\right)\left(M+2\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}M=0\\M=1\\M=-2\end{cases}}\)
vậy.........
Ta có
\(M^3+M^2-2M=0\)
\(\Leftrightarrow M\left(M^2+M-2\right)=0\)( I )
Lại có
\(M^2+M-2=M^2-M+2M-2\)
\(=M\left(M-1\right)+2\left(M-1\right)\)
\(=\left(M+2\right)\left(M-1\right)\)( II )
Thay ( II ) vào ( I ) ta được : \(M\left(M+2\right)\left(M-1\right)=0\)
\(\Leftrightarrow M=0;M=-2;M=1\)
Vậy M = 0; M = -2 ; M = 1
\(\frac{m-5}{m+3}>0\)
\(\Rightarrow\hept{\begin{cases}m-5>0\\m+3>0\end{cases}}\) hoặc \(\hept{\begin{cases}m-5< 0\\m+3< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}m>5\\m>-3\end{cases}}\) hoặc \(\hept{\begin{cases}m< 5\\m< -3\end{cases}}\)
=> -3 > m > 5
=.= hk tốt!!
\(\frac{m-5}{m+3}>0\)
th1 :
\(\hept{\begin{cases}m-5>0\\m+3>0\end{cases}\Rightarrow\hept{\begin{cases}m>5\\m>-3\end{cases}\Rightarrow}m>5}\)
th2 :
\(\hept{\begin{cases}m-5< 0\\m+3< 0\end{cases}\Rightarrow\hept{\begin{cases}m< 5\\m< -3\end{cases}\Rightarrow}m< 5\left(m\ne-3\right)}\)