\(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{1+x}-\sqrt{x}\right).\)

BÀI NÀ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2017

Bạn có học thì suy nghĩ trước khi nói!Bạn muốn lời giải thì đây(mình lớp 10):

\(\sqrt{1+x}-\sqrt{x}=\dfrac{\left(\sqrt{1+x}-\sqrt{x}\right)\left(\sqrt{1+x}+\sqrt{x}\right)}{\sqrt{1+x}+\sqrt{x}}=\dfrac{1}{\sqrt{1+x}+\sqrt{x}}\)

\(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{1+x}-\sqrt{x}\right)=\lim\limits_{x\rightarrow+\infty}\left(\dfrac{1}{\sqrt{1+x}+\sqrt{x}}\right)=0\)

8 tháng 5 2017

Thành ĐạtNguyễn Huy TúĐức Minh.... æ CTV lo mà tag tên nhau vào mà giải quyết nhé t mà nói thì hơi quá

-Còn về bài này chả cần nâng cao tao đây làm 1 chốc là xong chỉ sợ động phải kiến thức m` chưa học thôi

4 tháng 3 2017

cánh cửa thần kì

ok

Túi thần kì

27 tháng 3 2017

j mà gửi lên lớp 11 vậy má!!!

27 tháng 3 2017

ghi lun cái đề đi

16 tháng 3 2017

banh mi chi nho

4 tháng 5 2017

e hk tham gia

tui đây nè-_-

tui dag nhắn mà ông bơ tui luôn

chán thấy mẹ

ông bỏ rơi tui mà còn kiu nữa

mấy nay buồn thấy mẹ

8 tháng 2 2017

10-9+8-7+6-5+4-3+2-1 = (10-9)+(8-7)+(6-5)+(4-3)+(2-1)

= 1 + 1 + 1 + 1 + 1

= 5

Không biết có đúng hông nữa nhe, tại tui mới học lớp 6 hà.

16 tháng 2 2017

cách giải đúng với lớp 2 rồi.

6 tháng 9 2017

ADCT: \(\sqrt{u}'=\dfrac{u'}{2\sqrt{u}}\); \(\left(\dfrac{u}{v}\right)'=\dfrac{u'.v-u.v'}{v^2}\)

y'=\(\dfrac{\left(\dfrac{x^3}{x-1}\right)'}{2\sqrt{\dfrac{x^3}{x-1}}}\)

\(\left(\dfrac{x^3}{x-1}\right)'=\dfrac{\left(x^3\right)'.\left(x-1\right)-\left(x-1\right)'.x^3}{\left(x-1\right)^2}\)

=\(\dfrac{3x^2.\left(x-1\right)-x^3}{\left(x-1\right)^2}\)=\(\dfrac{2x^3-3x^2}{\left(x-1\right)^2}\)

=>y'\(\dfrac{2x^3-3x^2}{\left(x-1\right)^2.\sqrt{\dfrac{x^3}{x-1}}}\)=\(\dfrac{2x^3-3x^2}{\sqrt{\left(\dfrac{x}{x-1}\right)^3}}\)

7 tháng 9 2017

cái mẫu sai r

29 tháng 3 2017

cau 12:

gọi E là trung điểm AB \(\Rightarrow\)MẸ//BC ; và EN// AC do do ME=BD/2 ;NE= AC/2

\(\Rightarrow\left[\widehat{BD;AC}\right]=\left[\widehat{ME;EN}\right]=90^0\)

\(\Delta MEN\)vuông tại E\(\Rightarrow MN^2=ME^2+NE^2=\left(\dfrac{3a}{2}\right)^2+\left(\dfrac{a}{2}\right)^2=\left(\dfrac{10a^2}{4}\right)\Rightarrow MN=\dfrac{a\sqrt{10}}{2}\)

​chọn đáp án AVectơ trong không gian, Quan hệ vuông góc

29 tháng 3 2017

vẽ hình ở ngoài rồi dán vào ko biết tại sao nó lại thụt xuống dướileuleu

18 tháng 9 2019

2 : cho ab=cd(a,b,c,d0)ab=cd(a,b,c,d≠0) và đôi 1 khác nhau, khác đôi nhau

Chứng minh :

a) C1: Đặt \(\frac{a}{b}=\frac{c}{d}=k\)\(\Rightarrow\left\{{}\begin{matrix}a=kb\\c=kd\end{matrix}\right.\)

\(\frac{a-b}{a+b}=\frac{kb-b}{kb+b}=\frac{b\left(k-1\right)}{b\left(k+1\right)}=\frac{k-1}{k+1}\)

\(\frac{c-d}{c+d}=\frac{kd-d}{kd+d}=\frac{d\left(k-1\right)}{d\left(k+1\right)}\frac{k-1}{k+1}\)

Bài 1: 

a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{\dfrac{3}{2}}=\dfrac{z}{\dfrac{4}{3}}=\dfrac{x-y}{2-\dfrac{3}{2}}=\dfrac{15}{\dfrac{1}{2}}=30\)

Do đó: x=60; y=45; z=40

b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{x+y+z}{10+15+21}=\dfrac{92}{46}=2\)

Do đó: x=20; y=30; z=42