Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tọa độ giao điểm của (d1) và (d2) là nghiệm của hệ phương trình sau:
\(\left\{{}\begin{matrix}x+2=-2\\y=-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-4\\y=-2\end{matrix}\right.\)
Thay x=-4 và y=-2 vào (d3), ta được:
\(-4\left(k+1\right)+k=-2\)
=>\(-4k-4+k=-2\)
=>-3k=-2+4=2
=>\(k=\dfrac{2}{-3}=-\dfrac{2}{3}\)
Ta có:
x-y+5k=0 => y = x + 5k (1)
(2k - 3)x + k(y - 1) = 0 (2)
(k + 1)x - y + 1 = 0 => y = (k + 1)x + 1 (3)
Phương trình hoành độ giao điểm của (1) và (3) :
x + 5k = (k + 1)x + 1
<=> kx + 1 = 5k <=> x = (5k - 1)/k (k # 0)
Khi đó y = (5k - 1)/k + 5k = (5k^2 + 5k - 1)/k
Thay x = (5k - 1)/k và y = (5k^2 + 5k - 1)/k vào (2) :
(2k - 3).(5k - 1)/k + k.[(5k^2 + 5k - 1)/k - 1] = 0
<=> (2k - 3)(5k - 1)/k + k.(5k^2 + 4k - 1)/k = 0
<=> 10k^2 - 17k + 3 + 5k^3 + 4k^2 - k = 0
<=> 5k^3 + 14k^2 - 17k + 3 = 0
=> k = 0,2
\(\left(d_1\right):y=-x+1\)
\(\left(d_2\right):y=x-1\)
\(\left(d_3\right):y=\dfrac{k+1}{1-k}x+\dfrac{k+1}{k-1}\)
a) Để (d1) và (d3) vuông góc với nhau:
\(\Leftrightarrow\left(-1\right)\left(\dfrac{k+1}{1-k}\right)=-1\)\(\Leftrightarrow k=0\)(thỏa)
Vậy k=0
b)Giao điểm của (d1) và (d2) là nghiệm của hệ \(\left\{{}\begin{matrix}y=-x+1\\y=x-1\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}y=0\\x=1\end{matrix}\right.\)
Để (d1);(d2);(d3) đồng quy\(\Leftrightarrow\) (d3) đi qua điểm (1;0)
\(\Rightarrow0=\dfrac{k+1}{1-k}.1+\dfrac{k+1}{k-1}\)\(\Leftrightarrow0=0\)(lđ)
Vậy với mọi k thì (d1);d2);(d3) luôn cắt nhau tại một điểm
c)Gỉa sử \(M\left(x_0;y_0\right)\) là điểm cố định mà (d3) luôn đi qua
Khi đó \(\left(k+1\right)x_0+\left(k-1\right)y_0=k+1\) luôn đúng với mọi k
\(\Leftrightarrow k\left(x_0+y_0-1\right)+x_0-y_0-1=0\) luôn đúng với mọi k
\(\Leftrightarrow\left\{{}\begin{matrix}x_0+y_0-1=0\\x_0-y_0-1=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_0=2\\y_0=1\end{matrix}\right.\)
Vậy \(M\left(2;1\right)\) là điểm cố định mà (d3) luôn đi qua.
\(x-y+5k=0\)
\(\Leftrightarrow y=x+5k\)
\(\left(k+1\right)x-y+1=0\)
\(\Leftrightarrow y=\left(k+1\right)x+1\)
Vì 3 đường thẳng đồng quy gọi đó là A(x0;y0) nên ta có:
\(x+5k=\left(k+1\right)x+1\)
\(\Leftrightarrow5k-1=kx\)
\(\Leftrightarrow x=\frac{5k-1}{k}\)\(\Rightarrow y=\frac{5k-1+25k^2}{k}\)
\(\left(2k+3\right)x+k\left(y-1\right)=0\)
\(\Leftrightarrow-\frac{\left(2k+3\right)x}{k}+1=y\)
Thay \(\Leftrightarrow x=\frac{5k-1}{k}\)ta có:
...(Đến đây thay vô để tìm k).
tik mik nha mik tik lại
câu hỏi này mik chưa học đến vì mik mới học lớp 6 thui
tham khảo chtt nha bạn
chứ câu này mk chưa có học