Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
** Sửa lại hàm số: $y=-x+3$
a. Bạn có thể tự vẽ.
b. Để $y=(2k-1)x+1$ song song với (d)$ thì:
$2k-1=-1$
$\Leftrightarrow k=0$
c. PT hoành độ giao điểm của $(d)$ và $y=(k-3)x+5$:
$-x+3=(k-3)x+5$
$\Leftrightarrow (k-2)x=-2$
$\Leftrightarrow x=\frac{-2}{k-2}$ (đk: $k\neq 2$)
Khi đó: $y=-x+3=\frac{2}{k-2}+3$
Hai đths cắt nhau tại điểm có tung độ $7$
$\Leftrightarrow \frac{2}{k-2}+3=7$
$\Leftrightarrow \frac{2}{k-2}=4$
$\Leftrightarrow k-2=\frac{1}{2}\Leftrightarrow k=2,5$
a: Sửa đề: y=-x+3
Vẽ đồ thị
b: Để đường thẳng y=(2k-1)x+1 song song với (d) thì
\(\left\{{}\begin{matrix}2k-1=-1\\1\ne3\left(đúng\right)\end{matrix}\right.\)
=>2k-1=-1
=>2k=0
=>k=0
c: Thay y=7 vào y=-x+3, ta được:
-x+3=7
=>-x=4
=>x=-2
Thay x=-2 và y=7 vào y=(k-3)x+5, ta được:
-2(k-3)+5=7
=>-2(k-3)=2
=>k-3=-1
=>k=2
Sửa đề: (d'): y=-4x+3
a: Thay x=0 và y=0 vào y=(m+2)x+m, ta được:
\(0\left(m+2\right)+m=0\)
=>m=0
b:
Sửa đề: Để đường thẳng (d)//(d')
Để (d)//(d') thì \(\left\{{}\begin{matrix}m+2=-4\\m\ne3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m=-6\\m\ne3\end{matrix}\right.\)
=>m=-6
c: Sửa đề: cắt đường thẳng d'
Để (d) cắt (d') thì \(m+2\ne-4\)
=>\(m\ne-6\)
d: Để (d) trùng với (d') thì
\(\left\{{}\begin{matrix}m+2=-4\\m=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-6\\m=3\end{matrix}\right.\)
=>\(m\in\varnothing\)
a, d1//d2 <=> 2m-1= m+1 <=> 2m-m = 1+1 <=> m=2
a: Để (d1)//(d2) thì \(\left\{{}\begin{matrix}2m-1=m+1\\-2m+5< >m-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2m-m=1+1\\-2m-m< >-1-5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m=2\\-3m\ne-6\end{matrix}\right.\)
=>\(m\in\varnothing\)
b: Để (d1) cắt (d2) thì \(2m-1\ne m+1\)
=>\(2m-m\ne1+1\)
=>\(m\ne2\)
a, Với \(m\ne2\)
d đi qua A(0;5) <=> \(m=5\)(tm)
b, (d1) : y = 2x + 3 nhé, mình đặt tên luôn ><
d // d1 <=> \(\hept{\begin{cases}m-2=2\\m\ne3\end{cases}}\Leftrightarrow\hept{\begin{cases}m=4\\m\ne3\end{cases}}\Leftrightarrow m=4\)
Để hai đường thẳng \(y = ax + 2\) và \(y = 9x - 9\) song song với nhau thì \(\left\{ \begin{array}{l}a = 9\\2 \ne - 9\end{array} \right. \Rightarrow a = 9\).
Do đó, để đường thẳng \(y = ax + 2\) song song với đường thẳng \(y = 9x - 9\) thì \(a = 9\).
1. Đề bài ko đúng, cô lấy x = 1, y = 2 thì:
\(VT=1-\frac{1.4}{3}=-\frac{1}{3}\)
\(VP=1-1.2=-1\)
Ta thấy VT và VP không bằng nhau.
2. Ta có thể thực hiện phép chia f(x) cho g(x) hoặc tách như sau:
\(f\left(x\right)=x^{2013}+x^{2012}-kx^5-kx^4+kx^4+kx^3+\left(1-k\right)x^3+\left(1-k\right)x^2+kx^2+kx\)
\(-kx-k-2k\)
\(=\left(x+1\right)\left[x^{2012}-kx^4+kx^3+\left(1-k\right)x^2+kx-k\right]-2k\)
\(=g\left(x\right)\left[x^{2012}-kx^4+kx^3+\left(1-k\right)x^2+kx-k\right]-2k\)
Vậy để f(x) chia g(x) dư 2014 thì -2k = 2014 hay k = -1007
Đồ thị hai hàm số \(y = kx - 1\) và \(y = 4x + 1\) cắt nhau khi: \(k \ne 4\).
Vậy để đồ thị hai hàm số \(y = kx - 1\) và \(y = 4x + 1\) cắt nhau thì \(k \ne 4\).
Để hai đường thẳng này song song thì
\(\left\{{}\begin{matrix}2-k^2=k\\k-5< >3k-7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-k^2-k+2=0\\-2k\ne-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}k^2+k-2=0\\k\ne1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(k+2\right)\left(k-1\right)=0\\k\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}k\in\left\{-2;1\right\}\\k\ne1\end{matrix}\right.\)
=>k=-2
ĐKXĐ: \(\left\{{}\begin{matrix}2-k^2\ne0\\k\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}k\ne0\\k\ne\sqrt{2}\\k\ne-\sqrt{2}\end{matrix}\right.\)
Để hai đường thẳng đã cho song song thì:
\(\left\{{}\begin{matrix}2-k^2=k\\k-5\ne3k-7\end{matrix}\right.\)
*) \(2-k^2=k\)
\(\Leftrightarrow k^2+k-2=0\)
\(\Leftrightarrow k^2-k+2k-2=0\)
\(\Leftrightarrow\left(k^2-k\right)+\left(2k-2\right)=0\)
\(\Leftrightarrow k\left(k-1\right)+2\left(k-1\right)=0\)
\(\Leftrightarrow\left(k-1\right)\left(k+2\right)=0\)
\(\Leftrightarrow k-1=0;k+2=0\)
+) \(k-1=0\)
\(\Leftrightarrow k=1\) (nhận) (1)
+) \(k+2=0\)
\(\Leftrightarrow k=-2\) (nhận) (2)
*) \(k-5\ne3k-7\)
\(\Leftrightarrow k-3k\ne-7+5\)
\(\Leftrightarrow-2k\ne-2\)
\(\Leftrightarrow k\ne1\) (3)
Từ (1), (2) và (3) \(\Rightarrow k=-2\) thì hai đường thẳng đã cho song song