K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2024

khai triển đa thức ta đc:

=x2-4x+4+x2+4x+4+x3+9x2+27x+27+27x3+27x2+9x+1

=28x3+36x2+36x+36

Vậy hệ số của x2 sau khi khai triển là 36

DD
24 tháng 7 2021

Tổng các hệ số phi khai triển đa thức \(P\left(x\right)\)là \(P\left(1\right)\).

\(P\left(1\right)=\left(1^3-2.1^2+2\right)^{2018}=1^{2018}=1\)

25 tháng 1 2021

mong các bạn giúp mình, cảm ơn rất nhiều

23 tháng 6 2021

\(Q=(x^3-3x^2+2x+1)(-x^2)-x(2x^2-3x+1)\)

\(=-x^5+3x^4-2x^3-x^2-2x^3+3x^2-x\)

\(=-x^5+3x^4-4x^3+2x^2-x\)

Hệ số của \(x^3:-4\)

Hệ số của \(x^2:2\).

28 tháng 7 2019

Bài 2:

a) \(x^2+y^2-9-2xy\)

\(=\left(x^2-2xy+y^2\right)-3^2\)

\(=\left(x-y\right)^2-3^2\)

\(=\left(x-y-3\right)\left(x-y+3\right)\)

b) \(4x^2-5x-9\)

\(=4x^2+4x-9x-9\)

\(=4x\left(x+1\right)-9\left(x+1\right)\)

\(=\left(x+1\right)\left(4x-9\right)\)

28 tháng 7 2019

\(\left(2x-3\right)^2-\left(4x-1\right)\left(x+2\right)=4x^2-12x+9-4x^2-7x+2=-19x+11\)

\(\left(3x+2\right)\left(3x-2\right)-\left(3x-1\right)^2=9x^2-4-9x^2+6x-1=6x-5\)

\(x^2+y^2-9-2xy=\left(x-y\right)^2-9=\left(x-y-3\right)\left(x-y+3\right)\)

\(4x^2-5x-9=\left(4x-9\right)\left(x+1\right)\)

\(\left(x-3\right)^2-\left(x-1\right)\left(x-2\right)=5\Leftrightarrow x^2-6x+9-x^2+3x-2=5\)

\(\Leftrightarrow-3x=-2\Leftrightarrow x=x=\frac{2}{3}\)

\(3x^2+5x-8=0\Leftrightarrow\left(x-1\right)\left(3x+8\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{8}{3}\end{cases}}\)

30 tháng 6 2021

\(1.\)

\(-17-\left(x-3\right)^2\)

Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)

\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)

\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)

Dấu '' = '' xảy ra khi: 

\(\left(x-3\right)^2=0\)

\(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\)

Vậy \(Max=-17\)khi \(x=3\)

30 tháng 6 2021

\(2.\)

\(A=x\left(x+1\right)+\frac{3}{2}\)

\(A=x^2+x+\frac{3}{2}\)

\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)

\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)

Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)

24 tháng 6 2023

Hệ số cao nhất là 7 bạn nhé !

24 tháng 6 2023

Mình đag cần gấp giúp mình zớii ạ ><

18 tháng 7 2017

a ) \(\left(2x-3\right)^3=\left(2x\right)^3-3.\left(2x\right)^2.3+3.2x.3^2-3^3=8x^3-36x^2+54x-27\)

Có tổng hệ số là \(8-36+54-27=-1\)

b ) \(\left(x^2+2\right)^4=x^8+8x^6+24x^4+32x^2+16\)

Có tổng hệ số là : \(1+8+24+32+16=81\)

c ) \(\left(3x-5\right)^5=243x^5-2025x^4+6750x^3-11250x^2+9375x-3125\)

Có tổng hệ số là : \(243-2025+6750-11250+9375-3125=-32\)

6 tháng 11 2018

(2x-1)2 (3x-2) (4x+3) = (4x2 -4x +1) (12x2 +x -6)

= 48x4 + 4x3 - 24x2 -48x3 -4x2 +24x +12x2 +x - 6

=48x4 -44x3 -16x2+25x -6

Vậy hệ số của x2 là -16

31 tháng 10 2020

Bài 1.

x^3 + 3x^2 + 3 x^3 + 1 1 1 x^3 - 3x^2 + 2

3x2 + 2 có bậc thấp hơn x3 + 1 nên không thể chia tiếp

Vậy x3 + 3x2 + 3 = 1( x3 + 1 ) + 3x2 + 2

Bài 2.

Ta có : x3 + 3x2 + 3x + a có bậc là 3

x + 2 có bậc là 1

=> Thương bậc 2

lại có hệ số cao nhất của đa thức bị chia là 1

Đặt đa thức thương là x2 + bx + c

khi đó : x3 + 3x2 + 3x + a chia hết cho x + 2

<=> x3 + 3x2 + 3x + a = ( x + 2 )( x2 + bx + c )

<=> x3 + 3x2 + 3x + a = x3 + bx2 + cx + 2x2 + 2bx + 2c

<=> x3 + 3x2 + 3x + a = x3 + ( b + 2 )x2 + ( c + 2b )x + 2c

Đồng nhất hệ số ta được :

\(\hept{\begin{cases}b+2=3\\c+2b=3\\2c=a\end{cases}}\Leftrightarrow\hept{\begin{cases}b=1\\c=1\\a=2\end{cases}}\Rightarrow a=2\)

Vậy a = 2

3 tháng 12 2019

Ta thấy rằng : P ( x ) là một đa thức bậc 3 và có hệ số cao nhất bằng 3 . Do đó ta viết P ( x ) dưới dạng chính tắc như sau :

\(P\left(x\right)=3x^3+Bx^2+Cx+D\) 

\(\Rightarrow\left(x-1\right)\left(x-3\right)\left(3x+4\right)+5x-2=3x^3+Bx^2+Cx+D\)

+) Với x =0 ta có D = 10

+) Với x = 1 ta có : 3 = 3 + B + C + 10

=> B + C = -10 ( 1 )

+) Với x = -1 ta có : 1 = -3 + B - C = 10

=> B -C = 6 ( 2 )

Từ (1) và (2) suy ra B = -8 ; C= -2

Vậy \(P\left(x\right)=3x^3-8x^2-2x+10\)